On the non-split extension group $2^{6}{^{cdot}}Sp(6,2)$
نویسندگان
چکیده مقاله:
In this paper we first construct the non-split extension $overline{G}= 2^{6} {^{cdot}}Sp(6,2)$ as a permutation group acting on 128 points. We then determine the conjugacy classes using the coset analysis technique, inertia factor groups and Fischer matrices, which are required for the computations of the character table of $overline{G}$ by means of Clifford-Fischer Theory. There are two inertia factor groups namely $H_{1} = Sp(6,2)$ and $H_{2} = 2^{5}{:}S_{6},$ the Schur multiplier and hence the character table of the corresponding covering group of $H_{2}$ were calculated. Using information onconjugacy classes, Fischer matrices and ordinary and projective tables of $H_{2},$ we concluded that we only need to use the ordinary character table of $H_{2}$ to construct the character table of $overline{G}.$ The Fischer matrices of $overline{G}$ are all listed in this paper. The character table of $overline{G}$ is a $67 times 67$ integral matrix, it has been supplied in the PhD Thesis of the first author, which could be accessed online.
منابع مشابه
on the non-split extension group $2^{6}{^{cdot}}sp(6,2)$
in this paper we first construct the non-split extension $overline{g}= 2^{6} {^{cdot}}sp(6,2)$ as a permutation group acting on 128 points. we then determine the conjugacy classes using the coset analysis technique, inertia factor groups and fischer matrices, which are required for the computations of the character table of $overline{g}$ by means of clifford-fischer theory. there are two inerti...
متن کاملOn the Fischer-Clifford matrices of the non-split extension $2^6{{}^{cdot}}G_2(2)$
The group $2^6{{}^{cdot}} G_2(2)$ is a maximal subgroup of the Rudvalis group $Ru$ of index 188500 and has order 774144 = $2^{12}.3^3.7$. In this paper, we construct the character table of the group $2^6{{}^{cdot}} G_2(2)$ by using the technique of Fischer-Clifford matrices.
متن کاملOn the non-split extension $2^{2n}{^{cdot}}Sp(2n,2)$
In this paper we give some general results on the non-splitextension group $overline{G}_{n} = 2^{2n}{^{cdot}}Sp(2n,2), ngeq2.$ We then focus on the group $overline{G}_{4} =2^{8}{^{cdot}}Sp(8,2).$ We construct $overline{G}_{4}$ as apermutation group acting on 512 points. The conjugacy classes aredetermined using the coset analysis technique. Then we determine theinertia factor groups and Fischer...
متن کاملon the fischer-clifford matrices of the non-split extension $2^6{{}^{cdot}}g_2(2)$
the group $2^6{{}^{cdot}} g_2(2)$ is a maximal subgroup of the rudvalis group $ru$ of index 188500 and has order 774144 = $2^{12}.3^3.7$. in this paper, we construct the character table of the group $2^6{{}^{cdot}} g_2(2)$ by using the technique of fischer-clifford matrices.
متن کاملon the non-split extension $2^{2n}{^{cdot}}sp(2n,2)$
in this paper we give some general results on the non-splitextension group $overline{g}_{n} = 2^{2n}{^{cdot}}sp(2n,2), ngeq2.$ we then focus on the group $overline{g}_{4} =2^{8}{^{cdot}}sp(8,2).$ we construct $overline{g}_{4}$ as apermutation group acting on 512 points. the conjugacy classes aredetermined using the coset analysis technique. then we determine theinertia factor groups and fischer...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 39 شماره 6
صفحات 1189- 1212
تاریخ انتشار 2013-12-15
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023