On the Noetherian dimension of Artinian modules with homogeneous uniserial dimension

نویسندگان

  • A.R. Alehafttan Department of Mathematics‎, ‎Shahid Chamran University of Ahvaz‎, ‎Ahvaz‎, ‎Iran.
  • N. Shirali Department of Mathematics‎, ‎Shahid Chamran University of Ahvaz‎, ‎Ahvaz‎, ‎Iran.
چکیده مقاله:

 ‎In this article‎, ‎we first‎ ‎show that non-Noetherian Artinian uniserial modules over‎ ‎commutative rings‎, ‎duo rings‎, ‎finite $R$-algebras and right‎ ‎Noetherian rings are $1$-atomic exactly like $Bbb Z_{p^{infty}}$‎. ‎Consequently‎, ‎we show that if $R$ is a right duo (or‎, ‎a right‎ ‎Noetherian) ring‎, ‎then the Noetherian dimension of an Artinian‎ ‎module with homogeneous uniserial dimension is less than or equal‎ ‎to $1$‎. ‎In particular‎, ‎if $A$ is a quotient finite dimensional‎ ‎$R$-module with homogeneous uniserial dimension‎, ‎where $R$ is a‎ ‎locally Noetherian (or‎, ‎a Noetherian duo) ring‎, ‎then $n$-dim ‎$Aleq‎ ‎1$‎. ‎We also show that the Krull dimension of Noetherian modules is‎ ‎bounded by the uniserial dimension of these modules‎. ‎Moreover‎, ‎we introduce the concept of qu-uniserial modules and by using this‎ ‎concept‎, ‎we observe that if $A$ is an Artinian $R$-module‎, ‎such that‎ ‎any of its submodules is qu-uniserial‎, ‎where $R$ is a right duo (or‎, ‎a right Noetherian) ring‎, ‎then $n$-dim $‎Aleq 1$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The length of Artinian modules with countable Noetherian dimension

‎It is shown that‎ ‎if $M$ is an Artinian module over a ring‎ ‎$R$‎, ‎then $M$ has Noetherian dimension $alpha $‎, ‎where $alpha $ is a countable ordinal number‎, ‎if and only if $omega ^{alpha }+2leq it{l}(M)leq omega ^{alpha‎ +1}$, ‎where $ it{l}(M)$ is‎ ‎the length of $M$‎, ‎$i.e.,$ the least ordinal number such that the interval $[0‎, ‎ it{l}(M))$ cannot be embedded in the lattice of all su...

متن کامل

Upper bounds for noetherian dimension of all injective modules with Krull dimension

‎In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings‎. ‎In particular‎, ‎we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.

متن کامل

dedekind modules and dimension of modules

در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...

15 صفحه اول

On co-Noetherian dimension of rings

We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This  is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...

متن کامل

Copresented Dimension of Modules

 In this paper, a new homological dimension of modules, copresented dimension, is defined. We study some basic properties of this homological dimension. Some ring extensions are considered, too. For instance, we prove that if $Sgeq R$ is a finite normalizing extension and $S_R$ is a projective module, then for each right $S$-module $M_S$, the copresented dimension of $M_S$ does not exceed the c...

متن کامل

on co-noetherian dimension of rings

we define and studyco-noetherian dimension of rings for which the injective envelopeof simple modules have finite krull-dimension. this  is a moritainvariant dimension that measures how far the ring is from beingco-noetherian. the co-noetherian dimension of certain rings,including commutative rings, are determined. it is shown that the class ${mathcal w}_n$ of rings with co-noetherian dimension...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 7

صفحات  2457- 2470

تاریخ انتشار 2017-12-30

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023