Modules for which every non-cosingular submodule is a summand

نویسندگان

  • A.R. Moniri Hamzekolaee Department of Mathematics‎, ‎Faculty of Mathematical Sciences‎, ‎University of Mazandaran‎, ‎Babolsar‎, ‎Iran.
  • M. Hosseinpour Department of Mathematics‎, ‎Faculty of Mathematical Sciences‎, ‎University of Mazandaran‎, ‎Babolsar‎, ‎Iran.
  • Y. Talebi Department of Mathematics‎, ‎Faculty of Mathematical Sciences‎, ‎University of Mazandaran‎, ‎Babolsar‎, ‎Iran.
چکیده مقاله:

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some general properties of NS-modules‎. ‎Several‎ ‎examples are provided to separate different concepts‎. ‎It is shown that every non-cosingular‎ ‎NS-module is a direct sum of indecomposable modules‎. ‎We‎ ‎also discuss on finite direct sums of NS-modules.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings for which every simple module is almost injective

We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...

متن کامل

A Submodule-Based Zero Divisors Graph for Modules

‎Let $R$ be commutative ring with identity and $M$ be an $R$-module‎. ‎The zero divisor graph of $M$ is denoted $Gamma{(M)}$‎. ‎In this study‎, ‎we are going to generalize the zero divisor graph $Gamma(M)$ to submodule-based zero divisor graph $Gamma(M‎, ‎N)$ by replacing elements whose product is zero with elements whose product is in some submodules $N$ of $M$‎. ‎The main objective of this pa...

متن کامل

rings for which every simple module is almost injective

we introduce the class of “right almost v-rings” which is properly between the classes of right v-rings and right good rings. a ring r is called a right almost v-ring if every simple r-module is almost injective. it is proved that r is a right almost v-ring if and only if for every r-module m, any complement of every simple submodule of m is a direct summand. moreover, r is a right almost v-rin...

متن کامل

GENERALIZATIONS OF delta-LIFTING MODULES

In this paper we introduce the notions of G∗L-module and G∗L-module whichare two proper generalizations of δ-lifting modules. We give some characteriza tions and properties of these modules. We show that a G∗L-module decomposesinto a semisimple submodule M1 and a submodule M2 of M such that every non-zero submodule of M2 contains a non-zero δ-cosingular submodule.

متن کامل

On special submodule of modules

‎Let $R$ be a domain with quotiont field $K$‎, ‎and‎ ‎let $N$ be a submodule of an $R$-module $M$‎. ‎We say that $N$ is‎ ‎powerful (strongly primary) if $x,yin K$ and‎ ‎$xyMsubseteq N$‎, ‎then $xin R$ or $yin R$ ($xMsubseteq N$‎ ‎or $y^nMsubseteq N$ for some $ngeq1$)‎. ‎We show that a submodule‎ ‎with either of these properties is comparable to every prime‎ ‎submodule of $M$‎, ‎also we show tha...

متن کامل

On H-cofinitely supplemented modules

A module $M$ is called $emph{H}$-cofinitely supplemented if for every cofinite submodule $E$ (i.e. $M/E$ is finitely generated) of $M$ there exists a direct summand $D$ of $M$ such that $M = E + X$ holds if and only if $M = D + X$, for every submodule $X$ of $M$. In this paper we study factors, direct summands and direct sums of $emph{H}$-cofinitely supplemented modules. Let $M$ be an $emph{H}...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 3

صفحات  911- 922

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023