Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions
نویسندگان: ثبت نشده
چکیده مقاله:
This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for this family of distributions.
منابع مشابه
minimax estimation of the scale parameter in a family of transformed chi-square distributions under asymmetric squared log error and mlinex loss functions
this paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (sle) and modified linear exponential (mlinex) loss functions, using the lehmann theorem [2]. also we show that the results of podder et al. [4] for pareto distribution are a special case of our results for th...
متن کاملMinimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....
متن کاملAdmissible and Minimax Estimator of the Parameter $theta$ in a Binomial $Bin( n ,theta)$ distribution under Squared Log Error Loss Function in a Lower Bounded Parameter Space
Extended Abstract. The study of truncated parameter space in general is of interest for the following reasons: 1.They often occur in practice. In many cases certain parameter values can be excluded from the parameter space. Nearly all problems in practice have a truncated parameter space and it is most impossible to argue in practice that a parameter is not bounded. In truncated parameter...
متن کاملAdmissibility in a One Parameter Non-regular Family with Squared-log Error Loss Function
‎Consider an estimation problem in a one-parameter non-regular distribution when both endpoints of the support depend on a single parameter‎. ‎In this paper‎, ‎we give sufficient conditions for a generalized Bayes estimator of a parametric function to be admissible‎. ‎Some examples are given‎. ‎
متن کاملminimax estimator of a lower bounded parameter of a discrete distribution under a squared log error loss function
the problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including binomial negative binomial discrete weibull and etc., is considered. we give necessary and sufficient conditions for which the bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function. for s...
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 17 شماره 3
صفحات -
تاریخ انتشار 2006-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023