Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps

نویسندگان

چکیده مقاله:

In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive result on the Nadler contraction theorem for multivalued mappings in this space. In the following, by expressing pseudo-Banach-type pairs of mappings, we study the conditions for the existence of a unique coupled strong fixed point in these mappings. Pseudo-Chatterjae mapping $F:X times Xto X$ satisfies in [dleft( F(x, y), F(u, v) right) leq k max left{ dleft( x, F(u, v)right), dleft( F(x, y), uright) right}, ] where $x, v in A$, $y, u in B$ and $0 < k < frac{1}{2}$. Also, We define some quasi-Banach and Pseudo-Chatterjae contraction inequalities. In addition, we will prove theorems about coupled fixed points. Finally, several examples are presented to understand the our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordered S-Metric Spaces and Coupled Common Fixed Point Theorems of Integral Type Contraction

In the present paper, we introduces the notion of integral type contractive mapping with respect to ordered S-metric space and prove some coupled common fixed point results of integral type contractive mapping in ordered S-metric space. Moreover, we give an example to support our main result.

متن کامل

ordered s-metric spaces and coupled common fixed point theorems of integral type contraction

in the present paper, we introduces the notion of integral type contractive mapping with respect to ordered s-metric space and prove some coupled common fixed point results of integral type contractive mapping in ordered s-metric space. moreover, we give an example to support our main result.

متن کامل

Integral type contraction and coupled fixed point theorems in ordered G-metric spaces

In this paper, we apply the idea of integral type contraction and prove some coupled fixed point theorems for such contractions in ordered $G$-metric space. Also, we support the main results by an illustrative example.

متن کامل

Coupled coincidence point and common coupled fixed point theorems in complex valued metric spaces

In this paper, we introduce the concept of a w-compatible mappings and utilize the same to discuss the ideas of coupled coincidence point and coupled point of coincidence for nonlinear contractive mappings in the context of complex valued metric spaces besides proving existence theorems which are following by corresponding unique coupled common fixed point theorems for such mappings. Some illus...

متن کامل

Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces

The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

متن کامل

Coupled common fixed point theorems for $varphi$-contractions in probabilistic metric spaces and applications

In this paper, we give some new coupled common  fixed point theorems for probabilistic $varphi$-contractions  in Menger probabilistic metric spaces.  As applications of the main results, we obtain some coupled common fixed point theorems in usual metric spaces and fuzzy metric spaces. The main results of this paper improvethe corresponding results given by some authors. Finally, we give one exa...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 23

صفحات  73- 86

تاریخ انتشار 2020-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023