Geometrically nonlinear analysis of axially functionally graded beams by using finite element method
نویسنده
چکیده مقاله:
The aim of this paper is to investigate geometrically nonlinear static analysis of axially functionally graded cantilever beam subjected to transversal non follower load. The considered problem is solved by finite element method with total Lagrangian kinematic approach. The material properties of the beam vary along the longitudinal direction according to the power law function. The finite element model of the beam is considered in the three dimensional continuum approximation for an eight-node quadratic element. The geometrically nonlinear problem is solved by Newton-Raphson iteration method. In the numerical results, the effects of the material distribution on the geometrically nonlinear static displacements of the axially functionally graded beam are investigated. Also, the differences between of material distributions are investigated in geometrically analysis.
منابع مشابه
Finite Element Analysis of Functionally Graded Piezoelectric Beams
In this paper, the static bending, free vibration, and dynamic response of functionally graded piezoelectric beams have been carried out by finite element methodunder different sets of mechanical, thermal, and electrical loadings. The beam with functionally graded piezoelectric material (FGPM) is assumed to be graded across the thickness with a simple power law distributio...
متن کاملNonlinear Vibration Analysis of Piezoelectric Functionally Graded Porous Timoshenko Beams
In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) beam with porosities material is investigated based on the Timoshenko beam theory. Material properties of FG porous beam are described according to the rule of mixture which modified to approximate material properties with porosity phases. The Ritz method is used to obtain the governing equation which is then...
متن کاملFree Vibration Analysis of Nanoplates Made of Functionally Graded Materials Based On Nonlocal Elasticity Theory Using Finite Element Method
In this paper, an analysis of free vibration in functionally graded nanoplate is presented. Third-order shear deformation plate theory is used to reach more accuracy in results. Small-scale effects are investigated using Eringen`s nonlocal theory. The governing equations of motion are obtained by Hamilton`s principle. It is assumed that the properties of nanoplates vary through their thicknesse...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملTheoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers
In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable solids is presented, and governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed using the principle of virtua...
متن کاملVibration characteristics of axially loaded tapered Timoshenko beams made of functionally graded materials by the power series method
Abstract: In the present article, a semi-analytical technique to investigate free bending vibration behavior of axially functionally graded non-prismatic Timoshenko beam subjected to a point force at both ends is developed based on the power series expansions. The beam is assumed to be made of linear elastic and isotropic material with constant Poisson ratio. Material properties including the ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 51 شماره 2
صفحات 411- 416
تاریخ انتشار 2020-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023