Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

نویسندگان

چکیده مقاله:

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the earth surface. The ionospheric delay is the main error source for GPS. The delay can vary from a few meters to tens of meters depending on the solar cycle, hour of day, season, geographic location and satellite elevation angle. Knowledge of the ionospheric electron density is essential for a wide range of applications, e.g., radio and telecommunications, satellite tracking, and earth observation from space. In order to understand the nature of those causes and to analyze ionospheric structure, it is necessary to monitor the variations on the electron density of the ionosphere both spatially and dynamically. Because of the dispersion of the ionospheric layer and its destructive effect on passing waves, modeling and predicting the behavior of this layer of the atmosphere is one of the most useful topics in geodesy and space studies. The parameter used to study the physical properties of the ionosphere is called the Total Electron Content (TEC). For modeling the TEC, many methods have been proposed that require large computational operations and sometimes lack sufficient precision for ionospheric modeling. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) is used to predict TEC variations for the next day. An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference system is a kind of artificial neural network that is based on Takagi–Sugeno fuzzy inference system. The technique was developed in the early 1990s. Since it integrates both neural networks and fuzzy logic principles, it has potential to capture the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy IF–THEN rules that have learning capability to approximate nonlinear functions. Hence, ANFIS is considered a universal estimator. In order to do this, observations of Tehran's permanent GPS station were used for three different months (May, April and December) for years (2015 and 2011) to train the Anfis network, and predictions is made for days (30, 3, and 6) in the months of May , December and April. These observations have been selected to include high, medium, and low solar activity. The genetic algorithm has been designed to determine the optimal time lag for training the Anfis network. Also, to evaluate the results of the adaptive neuro-fuzzy inference system, the TEC values obtained from this system has been compared with artificial neural network (ANN) values with the Levenberg-Marquardt training algorithm, TEC derived from the GPS, and finally with the international reference ionosphere (IRI2016) TEC. The maximum RMSE for the difference between the predicted TEC and the observed TEC is 4.6 TECU for the Anfis, 5.06 TECU for the ANN and 5.8 TECU for the IRI 2016. Also, the minimum RMSE is computed 2.1 TECU for the Anfis, 2.6 TECU for the ANN and 4.3 TECU for the IRI 2016. The results demonstrate the high capability of the ANFIS network in the ionospheric time series modeling. For modeling the TEC, many methods have been proposed that require large computational operations and sometimes lack sufficient precision for ionospheric modeling. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) is used to predict TEC variations for the next day. An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference system is a kind of artificial neural network that is based on Takagi–Sugeno fuzzy inference system. The technique was developed in the early 1990s. Since it integrates both neural networks and fuzzy logic principles, it has potential to capture the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy IF–THEN rules that have learning capability to approximate nonlinear functions. Hence, ANFIS is considered a universal estimator. In order to do this, observations of Tehran's permanent GPS station ( ) were used for three different months (May, April and December) for years (2015 and 2011) to train the Anfis network, and predictions is made for days (30, 3, and 6) in the months of May , December and April. These observations have been selected to include high, medium, and low solar activity. The genetic algorithm has been designed to determine the optimal time lag for training the Anfis network. Also, to evaluate the results of the adaptive neuro-fuzzy inference system, the TEC values obtained from this system has been compared with artificial neural network (ANN) values with the Levenberg-Marquardt training algorithm, TEC derived from the GPS, and finally with the international reference ionosphere (IRI2016) TEC. The maximum RMSE for the difference between the predicted TEC and the observed TEC is 4.6 TECU for the Anfis, 5.06 TECU for the ANN and 5.8 TECU for the IRI 2016. Also, the minimum RMSE is computed 2.1 TECU for the Anfis, 2.6 TECU for the ANN and 4.3 TECU for the IRI 2016. The results demonstrate the high capability of the ANFIS network in the ionospheric time series modeling.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effect of traffic density on the accident externality from driving the case study of tehran

در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...

15 صفحه اول

the washback effect of discretepoint vs. integrative tests on the retention of content in knowledge tests

در این پایان نامه تاثیر دو نوع تست جزیی نگر و کلی نگر بر به یادسپاری محتوا ارزیابی شده که نتایج نشان دهندهکارایی تستهای کلی نگر بیشتر از سایر آزمونها است

15 صفحه اول

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

a case study of the two translators of the holy quran: tahereh saffarzadeh and laleh bakhtiar

بطورکلی، کتاب های مقدسی همچون قران کریم را خوانندگان میتوان مطابق با پیش زمینه های مختلفی که درند درک کنند. محقق تلاش کرده نقش پیش زمینه اجتماعی-فرهنگی را روی ایدئولوژی های مترجمین زن و در نتیجه تاثیراتش را روی خواندن و ترجمه آیات قرآن کریم بررسی کند و ببیند که آیا تفاوت های واژگانی عمده ای میان این مترجمین وجود دارد یا نه. به این منظور، ترجمه 24 آیه از آیات قرآن کریم مورد بررسی مقایسه ای قرار ...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 4

صفحات  109- 119

تاریخ انتشار 2019-06

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023