Comparison of disability score estimation in multiple sclerosis patients with artificial neural network and decision tree models

نویسندگان

  • Daryush Afshari Department of Neurology, Imam Reza Hospital, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
  • Mansour Rezaei Department of Biostatistics, Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
  • Nazanin Razazian Department of Neurology, Imam Reza Hospital, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
  • Negin Fakhri Department of Biostatistics, Student’s Research Committee, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
چکیده مقاله:

Background: Multiple Sclerosis (MS) is one of the most debilitating disease among young adults. Understanding the disability score (Expanded Disability Status Scale (EDSS)) of these patients is helpful in choosing their treatment process. Calculating EDSS takes a lot of time for Neurologists, so having a way to estimate EDSS can be helpful. This study aimed to estimate the EDSS score of MS patients using statistical models including Artificial Neural Network (ANN) and Decision Tree (DT) models. Methods: This cross-sectional study was performed on MS registry study data of Kermanshah province from April 2017 to November 2018. From the total data available in the registry system, The 12 variables including demographic information, information about MS disease and their EDSS score were extracted. EDSS scores were also estimated using ANN and DT models. The performance of the models was compared in terms of estimation error, correlation and mean of an estimated score. Data were analyzed using Weka software version 3.9.2 and SPSS software version 25 with a significance level of 0.05. Results: In this study, 353 people were studied. The mean age of the patients was 36.47±9.1 years, the mean age of onset was 9.2±30.34 years, the mean duration of the disease was 6.20±5.7 years and the mean EDSS score was 2.46±1.8. Estimation errors in the DT model were lower than in the ANN model. The real EDSS score was significantly correlated with scores estimated by DT (r=0.571) and ANN (r=0.623). The mean EDSS estimated by the DT model (2.46±1.1) was not significantly different from the real EDSS mean (P=0.621) but the mean EDSS estimated by the ANN model (2.87±1.3) was significantly higher than the real EDSS mean. (P<0.05). Conclusion: The DT model could better estimate the EDSS score of MS patients than the ANN model and made predictions that were closer to the actual EDSS scores. Therefore, the DT model can accurately estimate the EDSS score of MS patients.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of gestational diabetes prediction with artificial neural network and decision tree models

Background: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, which is associated with serious complications. In the event of early diagnosis of this disease, some of the maternal and fetal complications can be prevented. The aim of this study was to early predict gestational diabetes mellitus by two statistical models including artificial neural ne...

متن کامل

Comparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models

Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...

متن کامل

Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds

Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

comparison of artificial neural network and decision tree methods for mapping soil units in ardakan region

in response to the demand for soil spatial information, the acquisition of digital auxiliary data and their matching with field soil observations is on the increase. with the harmonization of these data sets, through computer based methods, the so-called digital soil maps are increasingly being found to be as reliable as the traditional soil mapping practices, and with no prohibitive costs. the...

متن کامل

Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models

Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 79  شماره 4

صفحات  299- 305

تاریخ انتشار 2021-07

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023