Abstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
نویسندگان
چکیده مقاله:
This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism. Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-convolution on $L^1(G_tau)$ and we show that, with respect to each of them, the function space $L^1(G_tau)$ is a Banach algebra. We define $tau$-convolution as a linear combination of the left and right $tau$-convolution and we show that the $tau$-convolution is commutative if and only if $K$ is abelian. We prove that there is a $tau$-involution on $L^1(G_tau)$ such that with respect to the $tau$-involution and $tau$-convolution, $L^1(G_tau)$ is a non-associative Banach $*$-algebra. It is also shown that when $K$ is abelian, the $tau$-involution and $tau$-convolution make $L^1(G_tau)$ into a Jordan Banach $*$-algebra. Finally, we also present the generalized notation of $tau$-convolution for other $L^p$-spaces with $p>1$.
منابع مشابه
abstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
this article presents a unified approach to the abstract notions of partial convolution and involution in $l^p$-function spaces over semi-direct product of locally compact groups. let $h$ and $k$ be locally compact groups and $tau:hto aut(k)$ be a continuous homomorphism. let $g_tau=hltimes_tau k$ be the semi-direct product of $h$ and $k$ with respect to $tau$. we define left and right $tau$-c...
متن کاملA tensor product approach to the abstract partial fourier transforms over semi-direct product groups
In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.
متن کاملa tensor product approach to the abstract partial fourier transforms over semi-direct product groups
in this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the fourier transform. as a consequence, we extend the fundamental theorems of abelian fourier transform to non-abelian case.
متن کاملPseudoframe multiresolution structure on abelian locally compact groups
Let $G$ be a locally compact abelian group. The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$. Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level. Also, the construction of affine frames for $L^2(G)$ bas...
متن کاملfixed point property for banach algebras associated to locally compact groups
در این پایان نامه به بررسی خاصیت نقطه ثابت و خاصیت نقطه ثابت برای نیم گروههای برگشت پذیر چپ روی بعضی جبرهای باناخ از جمله جبر فوریه و جبر فوریه استیلتیس پرداخته شده است. برای مثال بیان شده است که اگر گروه یک گروه فشرده موضعی با همسایگی فشرده برای عنصر همانی که تحت درونریختی ها پایاست باشد آنگاه جبر فوریه و جبر فوریه استیلتیس دارای خاصیت نقطه ثابت برای نیم گروه های برگشت پذیر چپ است اگر و تنها ا...
15 صفحه اولthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 02 شماره 2
صفحات 23- 44
تاریخ انتشار 2015-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023