A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

نویسنده

چکیده مقاله:

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is that for computing the coefficients of the expansion, we have to only compute a summation and the calculation of coefficients is exact. Also an upper bound for the error of the presented method is investigated. Illustrative examples are provided to show the accuracy and efficiency of the presented method. By using a small number of Hahn polynomials, significant results are achieved which are compared to other methods.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet‎-based numerical ‎method‎ ‎‎‎‎for solving fractional integro-differential equation with a weakly singular ‎kernel

This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel‎. ‎First‎, ‎a collocation method based on Haar wavelets (HW)‎, ‎Legendre wavelet (LW)‎, ‎Chebyshev wavelets (CHW)‎, ‎second kind Chebyshev wavelets (SKCHW)‎, ‎Cos and Sin wavelets (CASW) and BPFs are presented f...

متن کامل

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

متن کامل

Solving the fractional integro-differential equations using fractional order Jacobi polynomials

In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra  integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...

متن کامل

Numerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order

In this ‎article‎‎, ‎an ‎ap‎plied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of ‎high order ‎Volterra ‎integro-differential‎ equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical ‎illustrations‎ have been ‎solved‎ to ‎assert...

متن کامل

Application of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel

In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The  Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....

متن کامل

the legendre wavelet method for solving singular integro-differential equations

in this paper, we present legendre wavelet method to obtain numerical solution of a singular integro-differential equation. the singularity is assumed to be of the cauchy type. the numerical results obtained by the present method compare favorably with those obtained by various galerkin methods earlier in the literature.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 1

صفحات  0- 0

تاریخ انتشار 2020-07

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023