A new block by block method for solving two-dimensional linear and nonlinear Volterra integral equations of the first and second kinds

نویسندگان

چکیده مقاله:

In this paper, we propose a new method for the numerical solution of two-dimensional linear and nonlinear Volterra integral equations of the first and second kinds, which avoids from using starting values. An existence and uniqueness theorem is proved and convergence isverified by using an appropriate variety of the Gronwall inequality. Application of the method is demonstrated for solving the useful telegraph equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new block by block method for solving two-dimensional linear and nonlinear volterra integral equations of the first and second kinds

in this paper, we propose a new method for the numerical solution of two-dimensional linear and nonlinear volterra integral equations of the first and second kinds, which avoids from using starting values. an existence and uniqueness theorem is proved and convergence isverified by using an appropriate variety of the gronwall inequality. application of the method is demonstrated for solving the ...

متن کامل

a new block by block method for solving two-dimensional linear and nonlinear volterra integral equations of the first and second kinds

in this paper, we propose a new method for the numerical solution of two-dimensional linear and nonlinear volterra integral equations of the first and second kinds, which avoids from using starting values. an existence and uniqueness theorem is proved and convergence isverified by using an appropriate variety of the gronwall inequality. application of the method is demonstrated for solving the ...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

A new method for solving two-dimensional fuzzy Fredholm integral equations of the second kind

In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm integral equations of the second kind (2D-FFIE-2). We use new representation of parametric form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to system of two-dimensional Fredholm integral equations of the second kind in crisp case. We can use Adomian decomposition method for n...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 39  شماره 4

صفحات  707- 724

تاریخ انتشار 2013-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023