گروه خودریختی گراف توانی گروه های متناهی

نویسنده

چکیده مقاله:

این مقاله چکیده ندارد

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

گراف های توانی در گروه های متناهی

ابتدا گراف توانی بی جهت و جهت دار یک گروه را تعریف می کنیم .می دانیم که هرگاه دو گروه یکریخت باشند گراف توانی آنها نیز یکریخت می شوند. هدف اصلی این پایان نامه پاسخ به عکس سوال فوق است.به عبارت دیگر اگر گراف توانی متناظر با دو گروه یکریخت باشند آیا دو گروه یکریخت هستند؟ ابتدا نشان می دهیم گروه های متناهی غیر یکریخت وجود دارند که گراف های توانی بی جهت آنها یکریختند سپس ثابت می کنیم که سوال فوق در...

15 صفحه اول

گراف توانی نیم گروه ها و گروه های متناهی

چکیده گراف توانی متناظر با گروه یا نیم گروه g، گرافی است که مجموعه رئوس آن گروه یا نیم گروه g است و دو عنصر x,y?g مجاورند اگر یکی توانی از دیگری باشد. در این پایان نامه، خانواده نیم گروه های s که g(s) همبند یا کامل است را مشخص می کنیم. ما توجه ویژه ای به نیم گروه ضربی z_n و گروه u_n(گروه یکه های z_n) داریم که g(u_n) یک مولفه مهم ازg(z_n) است و ثابت می کنیم g(u_n) کامل است اگر و فقط اگر n=1,2,4...

15 صفحه اول

گروه خودریختی های مرکزی یک گروه متناهی

این پایانامه از سه بخش عمده تشکیل شده است. بخش اول به مطالعه گروه های متناهی مانند g اختصاص دارد که در آن ها ((autc(g)=z(inn(g که در آن (autc(g گروه خودریختی های مرکزی g و((z(inn(g بیان کننده مرکز خود ریختی های داخلی است. در بخش دوم رده پوچتوانی و طول حل پذیری گروه (autc(g به طور کامل بررسی می شود. در بخش سوم ابتدا ساختار خود ریختی های مرکزی برای 2- گروه های رده ماکزیمال مورد مطالعه قررار می گ...

پوچ توانی و حل پذیری گروه خودریختی مرکزی یک گروه متناهی

خودریختی ? از گروه g را یک خودریختی مرکزی گوییم هرگاه ? بر عناصر گروه g/z(g) همانی القا کند. به عبارت دیگر برای هر عنصر g از g، g-1 ?(g) عنصری از مرکز g باشد. مجموعه ی همه ی خودریختی های مرکزی گروه g را با نماد autc(g) نمایش می دهیم. این مجموعه یک زیرگروه نرمال از گروه aut(g) تشکیل می دهد. اگر g یک گروه آبلی باشد آنگاه autc(g) با aut(g) یکسان خواهد بود. گروه خودریختی مرکزی یک گروه متناهی در بح...

15 صفحه اول

درباره برخی خواص گراف توانی وابسته به یک گروه متناهی

فرض کنیم g یک گروه متناهی باشد. به گروه g یک گراف ساده وابسته می کنیم که آن را گراف توانی وابسته به g می نامیم و با نماد p(g) نشان می دهیم. در این گراف مجموعه راسها عبارت است از g و دو راس متمایز ما نند x و y زمانی توسط یک یال بهم وصل میشوند که یکی توانی از دیگری باشد. در این پایان نامه می خواهیم بعضی خواص گراف توانی وابسته به گروه متناهی g را مطالعه کنیم به خصوص عدد درختی p(g) برای بعضی از گرو...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 3

صفحات  56- 67

تاریخ انتشار 2022-11

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023