گرافهای هم انرژی
نویسندگان
چکیده مقاله:
فرض کنید یک گراف ساده داده شده است. هر مقدار ویژه ماتریس مجاورت این گراف یک مقدار ویژه آن نامیده می شود. انرژی یک گراف عبارت است از مجموع قدرمطلق های مقادیر ویژه آن. دو گراف با انرژی یکسان گرافهای هم انرژی نامیده می شوند. این مقاله به توصیف تاریخی و شرحی از نتایج جدید در این زمینه می پردازد.
منابع مشابه
گرافهای ?-بحرانی
فرض کنید g=(v,e) گرافی با n رأس و m یال باشد. زیرمجموعه ی s از رئوس گراف g را یک مجموعه ی احاطه گر برای g می نامیم هر گاه هر رأس از v-s با رأسی از s مجاور باشد. اندازه کوچکترین مجموعه احاطه گر در گراف g را عدد احاطه گری نامیده و آن را با ?(g) نشان می دهیم و یک مجموعه احاطه گر با اندازه ?(g) را یک ?(g) -مجموعه می نامیم. گراف ...
بررسی گرافهای تجزیه پذیر رأسی، هم پوشش ناپذیری و نظم کستلنومامفورد
رأس x از گراف g را رأس هم احاطه شده می نامیم اگر به ازای رأس y ،همسایگی بست? y زیرمجموع? همسایگی بست? x باشد و گراف g هم پوشش ناپذیر نامیده می شود اگر فاقد یال بوده و یا شامل یک رأس هم احاطه شده مانندx باشد بطوریکه g-x هم پوشش ناپذیر است. نشان می دهیم که گرافهای تجزیه پذیر رأسی فاقد- ( c4,c5)، هم پوشش ناپذیر هستند و ثابت می کنیم اگر g یک گراف خوش پوشش فاقد- (c4,c5,c7 )، باشد آنگاه تجزیه پذیر...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 29 شماره شماره 45
صفحات 41- 50
تاریخ انتشار 2011-02-20
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023