پیش بینی یک روزه قیمت سهام با استفاده از مدل ترکیبی

نویسندگان

  • علی‌محمد کیمیاگری استاد گروه مهندسی صنایع و مدیریت سیستم‌ها، دانشکده مهندسی صنایع و مدیریت سیستم‌ها، دانشگاه امیرکبیر، تهران، ایران.
  • وحید وفائی قائینی دانشجوی کارشناسی ارشد مهندسی مالی، دانشکده مهندسی صنایع و مدیریت سیستم‌ها، دانشگاه امیرکبیر، تهران، ایران. (نویسنده مسئول)
چکیده مقاله:

پیش‌بینی بازارهای مالی یکی از سرفصل‌های مهم در حوزه مالی و مطالعات پژوهشی است. اهمیت پیش‌بینی از یک سو و پیچیدگی آن از سوی دیگر باعث شده است که تحقیقات زیادی در این زمینه انجام شود. در این پژوهش از یک روش ترکیبی شامل تبدیل موجک، مدل ARMA-EGARCH و شبکه عصبی مصنوعی برای پیش­بینی یک دوره­ای قیمت سهام در بازارهای ایران و آمریکا استفاده شده است. ابتدا به کمک تبدیل موجک سری زمانی را به چند سری جزئی و یک سری تقریبی تجزیه شده و سپس مدل ARMA-EGARCH برای پیش­بینی سری­های جزئی و شبکه عصبی مصنوعی برای پیش­بینی سری تقریبی بکار گرفته می­شوند. در این مدل علاوه بر سری تقریبی، برخی از شاخص­های تکنیکال نیز برای بهبود شبکه عصبی به آن داده می­شوند. ارزیابی مدل پیشنهادی برای پیش­بینی قیمت در بازار ایران و آمریکا با مدل­های شبکه عصبی مصنوعی، ARIMA-EGARCH و ARIMA-ANN نشان داد که مدل پیشنهادی عملکرد بهتری نسبت به سایر مدل­ها برای پیش­بینی قیمت سهام در بازار ایران و آمریکا دارد.    

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی شاخص قیمت سهام با استفاده از مدل هیبریدی

پیش‌بینی شاخص قیمت بازار سهام به علت تاثیرپذیری آن از بسیاری عوامل اقتصادی و غیراقتصادی همواره امری مهم و چالش برانگیز بوده، به طوری که انتخاب بهترین و کارآمدترین مدل به منظور پیش‌بینی آن امری دشوار می‌باشد. از طرفی سری‌های زمانی دنیای واقعی، برای مثال سری زمانی شاخص قیمت سهام، به ندرت دارای ساختاری کاملاً خطی و یا غیرخطی است. مدل‌های هموارسازی نمایی، میانگین متحرک خودرگرسیون انباشته (آریما) و ش...

متن کامل

مدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام

این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...

متن کامل

مدل سازی پیش بینی قیمت سهام با استفاده از شبکه عصبی و مقایسه آن با روشهای پیش بینی ریاضی

استفاده از روشهایی برای پیش بینی وضعیت آینده، همواره دغدغه اصلی اندیشمندان علوم مختلف بوده است. در این راه بطور طبیعی، روشهایی، قابلیت ماندگاری و کاربردی مناسب دارند که دارای کمترین خطای ممکن در پیش بینی باشند. بر این مبنا در سالهای بسیار، روشهایی ریاضی؛ اعم از  میانگین ساده، میانگین موزون، میانگین دوبل، رگرسیون و مانند اینها، تنها الگوهایی بود که قاطعانه مورد تأیید و استفاده قرار می گرفت؛ اما ...

متن کامل

پیش بینی روند قیمت در بازار سهام با استفاده از الگوریتم جنگل تصادفی

فعالان بورس درصدد دستیابی و به کارگیری روش­هایی هستند تا بتوانند با پیش­بینی آتی قیمت سهام، سود سرمایه خود را افزایش دهند .بنابراین، ضروری به نظر می­رسد که روش­های مناسب، صحیح و متکی به اصول علمی در تعیین قیمت آینده سهام فرآروی افراد سرمایه­گذار قرار گیرد. تاکنون روش­های مختلفی جهت نیل به این هدف معرفی شده­اند که اغلب روش­های آماری و هوش مصنوعی هستند. در پژوهش حاضر با استفاده از رویکرد جنگل تصا...

متن کامل

پیش بینی قیمت سهام بااستفاده از الگوریتم کرم شب‌تاب (FA)

در این پژوهش به پیش‌بینی قیمت سهام 10 شرکت از شرکت‌های پذیرفته شده در بورس و تعدادی از شرکت‌های حاضر در فرابورس بااستفاده از الگوریتم کرم شب‌تاب  پرداخته شده است. این پژوهش ازنظر هدف، کاربردی، از نظر روش گردآوری اطلاعات شبه تجربی، توصیفی - پیمایشی و پس رویدادی است. همچنین ازنظر ابزارهای گردآوری اطلاعات، کتابخانه ای می باشد و بدلیل ماهیت مدل‌سازی و پیش‌بینی، ازنوع پژوهش استقرایی است. در این تحقی...

متن کامل

پیش بینی قیمت سهام با روش رگرسیون فازی

در پیش بینی قیمت سهام، روش های گوناگونی به کار رفته است، اما هیچ کدام از آن ها نمی تواند، به تمام متغیّرهای شرکت کننده در برآورد مدل قیمت سهام و اثر هر یک از آن ها و حل خطای مدل بپردازد. اکثر حوزه های پیش بینی در روش های کلاسیکی، چون ARIMA و روش های نوینی، چون شبکه های عصبی برای قیمت سهام قرار دارند. در این پژوهش به روشی دست یافته شده که حاصل ادغام رگرسیون معمولی و رگرسیون فازی به همراه بهینه س...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 30

صفحات  313- 328

تاریخ انتشار 2019-06-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023