پیش بینی میزان غلظت آلاینده های هوای تهران با استفاده از شبکه عصبی مصنوعی
نویسندگان
چکیده مقاله:
در این تحقیق شبکه عصبی مصنوعی جهت برآورد و پیش بینی غلظت گازهای آلاینده هوا به کار رفته است.با توجه به خطر آلودگی هوا در شهر تهران و ایجاد مشکلات زیست محیطی و بیماری های خطرناک تنفسی و پوستی به ویژه برای کودکان و سالمندان و نیاز شدید به کنترل آن ، این تحقیق در جهت برنامه ریزی و کنترل این مشکل در تهران و همچنین شهرهای بزرگ دیگر انجام گرفته است. برای این منظور از آمار غلظت گازهای آلاینده هوای ثبت شده توسط حسگر های (سنسور) نصب شده در ایستگاه بازار در سال های 1381 تا 1386 استفاده شده است(گاز NOX). از مدل اتو رگرسیو و سری های زمانی جهت تعیین ورودی های شبکه عصبی استفاده شده و بر اساس این مدل غلظت گاز در زمان جاری به غلظت گازهای 7 روز گذشته وابسته است.بنابراین ورودی های شبکه عصبی غلظت گاز در 7 روز گذشته و خروجی آن که در واقع پیش بینی شبکه عصبی می باشد، غلظت گاز در زمان جاری می باشد.سپس با استفاده از نرم افزار مطلب 7، مدل شبکه عصبی مصنوعی طراحی شده و این پیش بینی انجام گرفته است. همچنین این پیشبینی با استفاده از رگرسیون غیر خطی نیز انجام گرفته و در پایان نتایج مدل ثبت گردیده و خطای جذر میانگین مربعات مدل شبکه عصبی با معادلات رگرسیون مقایسه شده است و مشاهده می شود که خطای مدل شبکه عصبی کمتر از روش رگرسیون است.مدل های ارایه شده توانایی چشم گیری در پیش بینی میزان آلودگی هوای تهران را دارند.
منابع مشابه
پیش بینی میزان غلظت آلاینده های هوای تهران با استفاده از شبکه عصبی مصنوعی
در این تحقیق شبکه عصبی مصنوعی جهت برآورد و پیش بینی غلظت گازهای آلاینده هوا به کار رفته است.با توجه به خطر آلودگی هوا در شهر تهران و ایجاد مشکلات زیست محیطی و بیماری های خطرناک تنفسی و پوستی به ویژه برای کودکان و سالمندان و نیاز شدید به کنترل آن ، این تحقیق در جهت برنامه ریزی و کنترل این مشکل در تهران و همچنین شهرهای بزرگ دیگر انجام گرفته است. برای این منظور از آمار غلظت گازهای آلاینده هوای ثبت...
متن کاملپیش بینی غلظت آلاینده های هوای تهران بر اساس متغیرهای هواشناسی با استفاده از شبکه عصبی مصنوعی و رگرسیون خطی در فصول گرم و سرد
تهران آلودهترین شهر کشور محسوب میشود که این آلودگی میتواند آثار دراز مدت و کوتاه مدتی بر سلامت انسان داشته باشد. از اینرو پیشبینی غلظت آلایندهها میتواند در برنامهریزیهای پیشگیری و کنترل مفید واقع شود. روشهای متفاوتی برای پیشبینی وجود دارد و دراین میان سالها، روشهای شبکهی عصبی پیشرفت قابل توجهی در پیشبینی آلودگی هوا داشته است. در این مطالعه، از شبکهی عصبی مصنوعی پرسپترون سهلایه به...
متن کاملپیش بینی غلظت آلاینده های گازی در هوای شهر تبریز با استفاده از شبکه عصبی
آلودگی هوا به عنوان یک چالش مهم در شهرهای بزرگ مطرح میباشد که در نتیجه صنعتی شدن، گسترش شهرنشینی، رشد سریع ترافیک و افزایش فعالیتهای انسان تشدید شده است. آلایندههای هوا باعث بروز اثرات منفی بر سلامت انسان و تخریب محیط زیست شده لذا آگاهی از غلظت آلایندهها میتواند به عنوان اطلاعات کلیدی در برنامههای کنترل آلودگی مورد استفاده قرار گیرد. روشهای متعددی برای پیشبینی غلظت آلایندههای هوا وجود ...
متن کاملپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...
متن کاملپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...
متن کاملپیش بینی کوتاه مدت غلظت بنزن هوای شهر تهران با استفاده از شبکه عصبی مصنوعی
یکی از چالش هایی که در کلان شهر ها , به خصوص در تهران وجود دارد آلودگی هوا شهر می باشد که اثرات تخریب کننده ای بر سلامت عمومی دارد. با توجه به گسترش صنایع مختلف و افزایش تعداد اتومبیل ها , کاهش آلاینده های هوا امری اجتناب ناپذیر به نظر می رسد زیرا حذف کلیه منابع انتشار آلودگی یا وارد نشدن آلودگی به آتمسفر غیر منطقی است. بلکه باید آلودگی تا حدی کاهش یابد که اثرات مخرب قابل توجهی بوجود نیاورد. یک...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 13 شماره 1
صفحات 1- 10
تاریخ انتشار 2011-03-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023