پیش بینی مدیریت سود با استفاده از شبکه عصبی و درخت تصمیم
نویسندگان
چکیده مقاله:
بسیاری از موارد بحرانهای مالی مربوط به شرکتهای سهامی عام بوده که درحال افزایش است. بسیاری از سرمایه گذاران و اعتباردهندگان در مورد پیش بینی بحران مالی به خصوص زمانی که مدیریت سود رخ میدهد مشکلاتی دارند. تحقیقات اخیر به شناسایی عوامل و فاکتورهای مرتبط با مدیریت سود میپردازد. بنابراین از طریق آن قادر به تعیین ارتباط میان این عوامل و دستکاری سود هستند. به منظور کاهش ریسک بحرانهای مالی ناشی ازآن و کمک به سرمایه گذاران برای اجتناب از زیانهای بزرگ در بازار سهام لازم است تا مدلی برای پیش بینی مدیریت سود توسعه یابد. هدف اصلی این تحقیق بررسی دقت پیش بینی مدیریت سود با استفاده از شبکه های عصبی و درخت تصمیم گیری و مقایسه آن بامدل های خطی است. برای این منظور نه متغیر تأثیرگذار بر مدیریت سود به عنوان متغیرهای مستقل و اقلام تعهدی اختیاری، به عنوان متغیر وابسته مورد استفاده قرار گرفته است. در این تحقیق از چهار صنعت کشاورزی، دارویی، نساجی و فرآوردههای نفتی، تعداد 36 شرکت مورد بررسی قرارگرفت. از روش رگرسیون کمترین مربعات جهت مدل خطی و از شبکه عصبی پیشخور تعمیم یافته و درخت تصمیم گیری Cart, C5.0 جهت بررسی از طریق تکنیکهای داده کاوی استفاده شد. نتایج حاصل از این تحقیق نشان دادکه روش شبکه عصبی و درخت تصمیم گیری در پیش بینی مدیریت سود نسبت به روشهای خطی دقیق تر و دارای سطح خطای کمتری است. در رابطه با ارتباط بین متغیرهای وابسته با متغیر مستقل نیز میتوان گفت، مدیریت سود با متغیرهای اقلام تعهدی اختیاری دوره قبل ، اقلام تعهدی غیراختیاری دوره قبل یا آستانه عملکرد و ریسک درچهار روش مدلهای خطی، شبکه عصبی، درختهای C5.0 و Cart دارای بیشترین ارتباط است. Abstract Many financial crisis cases related to the public companies have increased recently, but many investors and creditors are difficult to foresee the financial crisis, especially in the cases with earnings management. In literature, many studies related to earnings management only focus on identifying some related factors which can significantly affect earnings management. Therefore, we can only figure out the correlation between these factors and earnings management. In order to decrease the financial crisis risks derived from earnings management and help the investors avoid suffering a great loss in the stock market, we developed a neural network model to predict the level of earnings management. This study aims to investigate the accuracy of earning management forecast by neural network and decision making tree as well as comparing that by linear models. To these end nine effective variables on earnings management were used as independent variables and discretionary accruals as dependent variables. From four industries: agriculture, pharmaceutical, textile and petroleum, 36 firms selected during 2006 to 2013. The least squares regression for linear model, generalized feed forward neural network and decision making tree c5.0, cart were applied for data mining. The results indicated that neural network and decision making tree has the least error in forecasting earnings management than more accurate linear methods. Concerning the relationship between dependent and independent variables, it is said that earning managements by discretionary accrual variables of the prior period (DAI), non-discretionary accruals of prior period or threshold performance (THOD) and risk (Risk) in four linear models, neural network, C5.0 trees and cart has the most correlation.
منابع مشابه
پیش بینی مدیریت سود با استفاده از درخت تصمیم گیری
با تشکیل و گسترش موسساتی که مالکیت عام یافته اند ضرورت تفکیک مالکیت از مدیریت هر چه بیشتر مشخص گردید. در نتیجه قشر جدیدی به عنوان مباشران ، اداره اینگونه موسسات را بر عهده گرفته و عملا مدیریت از مالکیت تفکیک شد. مدیران وظیفه مباشرت و حسابدهی در قبال منابع در اختیار خود و تهیه و ارائه گزارشهای مالی را بر عهده دارند. تضاد منافع میان مدیران و مالکان ، احتمال خطر ارائه اطلاعات غیر قابل اتکا را اف...
متن کاملپیش بینی مدیریت سود با استفاده از شبکه عصبی و درخت تصمیم در صنایع کشاورزی و نساجی شرکت های پذیرفته شده در بورس اوراق بهادار تهران
امروزه روش های کمی، به یکی ازمهمترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاری های کلان دربازارها تبدیل شده اند. دقت پیش بینی، یکی ازمهم ترین فاکتورهای انتخاب روش پیش بینی است. هدف اصلی این تحقیق بررسی دقت پیش بینی مدیریت سود با استفاده ازشبکه های عصبی و درخت تصمیم گیری و مقایسه آن بامدل های خطی است. برای این منظورنه متغیر تأثیرگذار برمدیریت سود به عنوان متغیرهای مستقل واقلام تعهدی اختی...
متن کاملپیش بینی سطح مدیریت سود با استفاده از شبکه های عصبی مصنوعی...
اکثر تحقیقات انجام شده در حوزه مدیریت سود به بررسی انگیزه ها و عوامل موثر بر سطح مدیریت سود پرداخته اند، ولی از این متغیرها به طور مستقیم برای پیش بینی سطح مدیریت سود استفاده نشده است. در نتیجه تنها همبستگی بین مدیریت سود و این متغیرها بررسی شده است. از این رو، طراحی یک مدل برای پیش بینی سطح مدیریت سود به منظور کاهش ریسک بحران های مالی ناشی از مدیریت سود و کمک به سرمایه گذاران، اعتبار دهندگان و...
متن کاملپیشبینی مدیریت سود با استفاده از شبکه عصبی و درخت تصمیم در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
هدف اصلی تحقیق حاضر بررسی دقت پیشبینی مدیریت سود با استفاده از شبکههای عصبی و درخت تصمیمگیری و مقایسه آن با مدلهای خطی است. برای این منظور از یازده متغیر تأثیرگذار بر مدیریت سود بهعنوان متغیرهای مستقل و اقلام تعهدی اختیاری بهعنوان متغیر وابسته استفاده شده است. در این تحقیق تعداد 55 شرکت از سال 1385 تا سال 1388 به صورت فصلی مورد بررسی قرار گرفت. از روش رگرسیون پنلی جهت مدل خطی و از شبکه عص...
متن کاملپیش بینی مدیریت سود با استفاده از شبکه عصبی و درخت تصمیم در صنایع کشاورزی و نساجی شرکت های پذیرفته شده در بورس اوراق بهادار تهران
امروزه روش های کمی، به یکی ازمهمترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاری های کلان دربازارها تبدیل شده اند. دقت پیش بینی، یکی ازمهم ترین فاکتورهای انتخاب روش پیش بینی است. هدف اصلی این تحقیق بررسی دقت پیش بینی مدیریت سود با استفاده ازشبکه های عصبی و درخت تصمیم گیری و مقایسه آن بامدل های خطی است. برای این منظورنه متغیر تأثیرگذار برمدیریت سود به عنوان متغیرهای مستقل واقلام تعهدی اختی...
متن کاملپیشبینی مدیریت سود با استفاده از شبکه عصبی و درخت تصمیم در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
هدف اصلی تحقیق حاضر بررسی دقت پیشبینی مدیریت سود با استفاده از شبکههای عصبی و درخت تصمیمگیری و مقایسه آن با مدلهای خطی است. برای این منظور از یازده متغیر تأثیرگذار بر مدیریت سود بهعنوان متغیرهای مستقل و اقلام تعهدی اختیاری بهعنوان متغیر وابسته استفاده شده است. در این تحقیق تعداد 55 شرکت از سال 1385 تا سال 1388 به صورت فصلی مورد بررسی قرار گرفت. از روش رگرسیون پنلی جهت مدل خطی و از شبکه عص...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 37
صفحات 1- 24
تاریخ انتشار 2018-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023