پیش بینی تقاضای بلندمدت انرژی الکتریکی با استفاده از الگوریتم ترکیبیِ عصبی- فازی و انبوه ذرات
نویسندگان
چکیده مقاله:
Storing the electrical energy in large scale is impossible. So, it is necessary to identify the factors affecting the electricity demand. Researchers have used different methods to forecast the future demand of electricity, among them intelligent methods and fuzzy based methods are more popular. Since ANFIS structure is based on researcher’s experience about phenomenon, the created structure may not have the best result. Therefore, we used PSO-ANFIS structure. In this paper long term electricity demand is forecasted until the year 2025 by hybrid PSO-ANFIS algorithm. The results confirm the high power of the Adaptive Neural based Fuzzy Inference System in forecasting the electricity demand. Results also indicate that the forecasted electricity demand will be 401 billion KWh in 2025. The prediction performance of the proposed technique is more accurate than the ARIMA model.
منابع مشابه
پیش بینی تقاضای انرژی با استفاده از شبکه عصبی مبتنی بر الگوریتم انبوه ذرات
انرژی نقش اساسی در فرایند تولید و رفاه اجتماعی داشته و پیش بینی تقاضای آن به منظور تنظیم بازار و عرضه مطمئن آن امری ضروری می باشد. با توجه به روند پرنوسان و غیرخطی تقاضای انرژی و متغیرهای موثر بر آن، مدل های غیرخطی بخصوص شبکه-های عصبی و الگوریتم انبوه ذرات در این امر توفیق بیشتری داشته اند. با توجه به اینکه در کنار نقاط قوت فراوان، این تکنیک ها دارای نقاط ضعفی مانند نیاز به تعیین فرم تبعی خاص، ...
متن کاملپیشبینی تقاضای انرژی با استفاده از شبکه عصبی مبتنی بر الگوریتم انبوه ذرات
انرژی نقش اساسی در فرایند تولید و رفاه اجتماعی داشته و پیشبینی تقاضای آن به منظور تنظیم بازار و عرضه مطمئن آن امری ضروری میباشد. با توجه به روند پرنوسان و غیرخطی تقاضای انرژی و متغیرهای موثر بر آن، مدلهای غیرخطی بخصوص شبکه-های عصبی و الگوریتم انبوه ذرات در این امر توفیق بیشتری داشتهاند. با توجه به اینکه در کنار نقاط قوت فراوان، این تکنیکها دارای نقاط ضعفی مانند نیاز به تعیین فرم تبعی خاص، ...
متن کاملانتخاب سناریوی مناسب برای پیش بینی تقاضای انرژی بخش خانگی-تجاری با استفاده از الگوریتم بهینهسازی انبوه ذرات
در دهههای اخیر، انرژی در کنار سایر عوامل تولید نقش تعیینکنندهای در رشد اقتصادی کشورها داشته و اهمیت آن همچنان رو به افزایش است. رشد اقتصاد جهان و روند صنعتی شدن موجب افزایش تقاضا و مصرف انرژی شده است. از سوی دیگر از میان بخشهای مصرفکنندهی انرژی، بخش خانگی– تجاری یکی از پرمصرفکنندهترین بخشهای تقاضای انرژی است. بطوریکه بیش از 34% از میزان مصرف انرژی را نسبت به سایر بخشها به خود اختصا...
متن کاملکاربرد شبکه عصبی مبتنی بر الگوریتم ژنتیک در پیش بینی تقاضای بلندمدت انرژی
پیشبینی تقاضای انرژی جهت عرضه به موقع، تنظیم بازار، هدفگذاری میزان صادرات و ایجاد امنیت انرژی اهمیت ویژهای دارد. روشهای مختلفی برای پیشبینی تقاضای انرژی معرفی شده است که در این بین با توجه به روند غیرخطی و پرنوسان تقاضای انرژی، تکنیکهای غیرخطی نتایج مطلوبتری داشته است. شبکههای عصبی و الگوریتم ژنتیک از مهمترین و پرکاربردترین تکنیکهای غیرخطی در این زمینه میباشند که هر یک نقاط ضعف و قوت خ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 10
صفحات 21- 56
تاریخ انتشار 2013-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023