پیش‌بینی شوری آب زیرزمینی زیر لوله‌های زهکش با استفاده از شبکه عصبی

نویسندگان

چکیده مقاله:

آگاهی از شوری لایه­های خاک زیر زهکش­ها بویژه در مناطقی با آب زیرزمینی کم عمق و شور مانند خوزستان منجر به انتخاب و طراحی بهترین عمق و فاصله زهکش می­شود. در تحقیق حاضر کاربرد روش شبیه­سازی شبکه عصبی مصنوعی در پیش­بینی روند تغییرات شوری آب زیرزمینی زیر لوله­های زهکش آزموده شد. به منظور واسنجی و اعتباریابی نتایج مدل از داده­های جمع­آوری شده از یک مدل آزمایشگاهی با ابعاد 8/1 در 1 در 2/1 متر استفاده گردید. در این مدل زهکش­ها در عمق­های 20، 40 و 60 سانتی­متری و در هر عمق در سه فاصله 60، 90 و 180 سانتی­متری نصب شدند. در روش شبکه عصبی مصنوعی از الگوریتم آموزش لونبرگ- مارکوارت با تابع انتقال سیگموئید، استفاده شد. پس از تجزیه و تحلیل آماری و محاسبه ریشه میانگین مربعات خطا، خطای استاندارد و ضریب همبستگی میزان برازش میان مقادیر واقعی و شبیه­سازی شده تغییرات شوری آب زیرزمینی محاسبه شد. مقدار این شاخص­ها به ترتیب 27/5 دسی­زیمنس بر متر، 12/0 و 96/0 برآورد گردید. مقادیر این شاخص ها برای  شوری خروجی از زهکش­ها در اعماق و فواصل مختلف نسبت به زمان و با دبی­های 07/0، 11/0 و 14/0 لیتر بر ثانیه به­ترتیب برابر با 34/0 دسی­زیمنس بر متر، 09/0 و 99/0 می­باشد. نتایج نشان داد روش شبکه عصبی مصنوعی در شبیه­سازی روند تغییرات شوری آب زیرزمینی زیر لوله­های زهکش و همچنین روند تغییرات شوری زه آب خروجی در اعماق و فواصل مختلف زهکش ها از دقت خوبی برخوردار است

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبیه سازی شوری آب زیرزمینی با استفاده از شبکه عصبی مصنوعی(ANN) در سواحل استان مازندران

چکیده امروزه یکی از مسائل محدود کننده در بحث تأمین آب، مسئله کیفیت آب است. اندازه گیری پارامتر های کیفی آب زیر زمینی مستلزم صرف  هزینه های زیاد و زمان بر می باشد. برآورد پارامترهای کیفی آب با استفاده از مدل ها موجب کاهش هزینه ها و دسترسی به آمار جامعی برای مدیریت منابع آب خواهد شد.  در این تحقیق از  شبکه عصبی مصنوعی (ANN) برای شبیه سازی شوری آب زیرزمینی در سواحل استان مازندران استفاده شد. بدین ...

متن کامل

پیش بینی تغییرات شوری زه آب کشاورزی در عمق‌ها و فاصله‌های مختلف زهکش زیرزمینی به روش شبکه عصبی مصنوعی

امروزه اهداف زیست محیطی و کشاورزی به طور هم‌زمان در طراحی سیستم‌های زهکشی در نظر گرفته   می‌شوند. بنابراین آگاهی از کمیت و کیفیت زه­آب تولید شده و تغییرات تراز سطح آب به منظور مدیریت و کنترل آن امری ضروری می‌باشد. در پژوهش حاضر به منظور پیش­بینی روند تغییرات شوری زه­آب خروجی، در عمق‌ها و فاصله‌های مختلف استقرار زهکش­ها از روش شبیه­سازی شبکه عصبی مصنوعی، روش حل Solver در نرم افزار اکسل و روش...

متن کامل

شبیه سازی شوری آب زیرزمینی با استفاده از شبکه عصبی مصنوعی(ann) در سواحل استان مازندران

چکیده امروزه یکی از مسائل محدود کننده در بحث تأمین آب، مسئله کیفیت آب است. اندازه گیری پارامتر های کیفی آب زیر زمینی مستلزم صرف  هزینه های زیاد و زمان بر می باشد. برآورد پارامترهای کیفی آب با استفاده از مدل ها موجب کاهش هزینه ها و دسترسی به آمار جامعی برای مدیریت منابع آب خواهد شد.  در این تحقیق از  شبکه عصبی مصنوعی (ann) برای شبیه سازی شوری آب زیرزمینی در سواحل استان مازندران استفاده شد. بدین ...

متن کامل

برآورد پتانسیل آلودگی آرسنیک آب های زیرزمینی شهرستان سنندج با استفاده از مدل شبکه عصبی مصنوعی

زمینه و هدف: شناسایی آبهای زیرزمینی آلوده به آرسنیک با استفاده از پارامترهای سطحی خاک و مدلسازی این رابطه در دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندگانه میتواند در مدیریت منابع آبی منطقه مفید باشد. مواد و روشها: در این مطالعه برآورد پتانسیل آلودگی آرسنیک آب های زیرزمینی سنندج با استفاده از مدل های رگرسیون خطی چندگانه و شبکه عصبی مصنوعی مورد آزمون قرار گرفت. در این راستا از بین چاه ها ی مجو...

متن کامل

تغذیه مصنوعی سفره‌های آب زیرزمینی از طریق کانال‌های زهکش سطحی با استفاده از روش AHP

 آب­های زیرزمینی در فعالیت­های اقتصادی و زندگی روزمره مردم نقشی اساسی دارند و ذخیره‌سازی آب در مخازن زیرزمینی از لحاظ اقتصادی سرمایه‌گذاری کمتری را می‌طلبد. در این پژوهش،  اولویت­بندی کانال­های زهکشی به منظور تغذیه مصنوعی آب­های زیرزمینی دشت سراب­نیلوفر به عنوان هدف اصلی مدنظر قرار گرفت و 13 لایه مختلف اطلاعاتی مستخرج از گزارش های فیزیوگرافی، هواشناسی، زمین­شناسی، خاک­شناسی، هیدرولوژی، آب­...

متن کامل

کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی

پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبر...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 16  شماره 52

صفحات  17- 17

تاریخ انتشار 2018-03-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023