پیشبینی ریسک ورشکستگی مالی بر اساس مدلهای حسابداری، بازاری و ترکیبی(ترکیب دو مدل) با استفاده از تکنیک شبکههای عصبی RBF و MLP در بورس اوراق بهادار تهران
نویسندگان
چکیده مقاله:
در این مقاله، به پیشبینی ریسک ورشکستگی مالی بر اساس مدلهای حسابداری، بازاری و ترکیبی (ترکیب دو مدل فوق) با استفاده از تکنیکهای MLP و RBF شبکههای عصبی پرداخته شده و نتایج تکنیکهای مذکور بر اساس شاخص میانگین مربعات خطا در سه مدل یاد شده با هم مقایسه شدهاند. نتایج پژوهش نشان میدهد شبکه عصبی RBF نسبت به شبکه MLP در هر سه مدل شامل(متغیرهای حسابداری، بازاری و ترکیبی) کاراتر است و دقت مدل ترکیبی بیشتر از مدلهای حسابداری و بازاری است. JEL: C45, G17, G33 نحوه استناد به این مقاله: عاطفتدوست، ع.، محمودی، م.، و راموز، ن. (1396). پیشبینی ریسک ورشکستگی مالی بر اساس مدلهای حسابداری، بازاری و ترکیبی( ترکیب دو مدل) با استفاده از تکنیک شبکههای عصبی RBF و MLP در بورس اوراق بهادار تهران. فصلنامه مدلسازی ریسک و مهندسی مالی، 2(3)، 320-339.
منابع مشابه
پیشبینی ریسک ورشکستگی مالی با استفاده از مدل ترکیبی در بورس اوراق بهادار تهران
پیشبینی ریسک ورشکستگی مالی یکی از مهمترین موضوعات در حوزه تصمیمگیری مالی شرکتها است. از این جهت، تاکنون مدلهای متنوعی که هرکدام از نظر متغیرهای پیشبینیکننده و تکنیکها متفاوتند، ارائه شدهاند. استفاده از ترکیب متغیرهای حسابداری و بازاری در مدل به عنوان ورودی، قطعاً بر نتایج و دقت پیشبینیها تاثیر مستقیمی خواهد داشت. در این مطالعه، پیشبینی با استفاده از مدل ترکیبی (استفاده از متغیرهای حسا...
متن کاملپیشبینی ورشکستگی مالی شرکتهای بورس اوراق بهادار تهران با استفاده از شبکههای عصبی مصنوعی
هدف اصلی این مقاله پیشبینی ورشکستگی مالی شرکتها در بورس اوراق بهادار تهران به وسیلهی شبکههای عصبی مصنوعی است. مقادیر میانگین مربوط به نسبتهای مالی کلیدی در پژوهشهای صورت گرفته در پیشینه موضوع بهعنوان ورودی شبکههای عصبی انتخاب شدهاند. شبکه عصبی بهکار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیدهاند و شامل شبکه عصبی پیشخور سه لایه با ت...
متن کاملمقایسه قابلیتهای مدلهای مبتنی بر حافظه بلندمدت و مدل های شبکه عصبی پویا در پیشبینی بازدهی بورس اوراق بهادار تهران
این مقاله با هدف معرفی یک الگوی مناسب جهت پیشبینی شاخص بازدهی بورس اوراق بهادار تهران صورت پذیرفته است. دادههای مورد استفاده در این پژوهش به صورت روزانه و شامل بازهی زمانی پنجم فروردین 1388 تا سیام آبان 1390 که مشتمل بر 616 مشاهده بوده که جهت مجزا سازی پیشبینیهای داخل نمونهای و خارج از نمونهای، از تقریباً 90% از مشاهدات (556 مشاهده) جهت تخمین ضرایب مدل و از مابقی (60 مشاهده) جهت انجام پی...
متن کاملپیش بینی ورشکستگی مالی شرکت های بورس اوراق بهادار تهران با استفاده از شبکههای عصبی مصنوعی
هدف اصلی این مقاله پیشبینی ورشکستگی مالی شرکتها در بورس اوراق بهادار تهران به وسیلهی شبکههای عصبی مصنوعی است. مقادیر میانگین مربوط به نسبتهای مالی کلیدی در پژوهشهای صورت گرفته در پیشینه موضوع بهعنوان ورودی شبکههای عصبی انتخاب شدهاند. شبکه عصبی بهکار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیدهاند و شامل شبکه عصبی پیشخور سه لایه با ت...
متن کاملاثر شفافیت سود حسابداری بر ریسک ورشکستگی در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
درتحقیق حاضر به بررسی اثر شفافیت سود حسابداری بر ریسک ورشکستگی شرکتها پرداخته شده است . جامعه آماری در تحقیق حاضر تمامی شرکتهای پذیرفته شده در بورس اوراق بهادار تهران می باشند که با استفاده از روش حذف سیستماتیک 114 شرکت از این جامعه آماری به عنوان نمونه انتخاب شده است . پس از اندازه گیری متغیرهای تحقیق داده های اماری مربوط با استفاده از آزمون جارک – برا مورد نرمال سنجی قرار گرفتند . نتایج حاصل...
متن کاملمقایسه قابلیتهای مدلهای مبتنی بر حافظه بلندمدت و مدل های شبکه عصبی پویا در پیشبینی بازدهی بورس اوراق بهادار تهران
این مقاله با هدف معرفی یک الگوی مناسب جهت پیشبینی شاخص بازدهی بورس اوراق بهادار تهران صورت پذیرفته است. دادههای مورد استفاده در این پژوهش به صورت روزانه و شامل بازهی زمانی پنجم فروردین 1388 تا سیام آبان 1390 که مشتمل بر 616 مشاهده بوده که جهت مجزا سازی پیشبینیهای داخل نمونهای و خارج از نمونهای، از تقریباً 90% از مشاهدات (556 مشاهده) جهت تخمین ضرایب مدل و از مابقی (60 مشاهده) جهت انجام پی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 3
صفحات 320- 339
تاریخ انتشار 2017-09-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023