پیشبینی جریان روزانه رودخانه اهرچای با استفاده از روش های شبکه های عصبی مصنوعی (ANN) و مقایسه آن با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS)
نویسندگان
چکیده مقاله:
در طی سالهای اخیر پیشبینی فرآیندهای هیدرولوژیکی به منظور بهرهبرداری پایدار از منابع آب با استفاده از روشهای هوشمند مورد توجه دست اندرکاران بخش آب قرار گرفته است. در این تحقیق با بهرهگیری از شبکههای عصبی مصنوعی (ANN) و سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) اقدام به پیشبینی دبی جریان روزانه رودخانه اهر چای واقع در استان آذربایجان شرقی در ایستگاه های اورنگ، برمیس و تازه کند گردید. برای مدلسازی جریان یک روز بعد، داده های دبی روزانه سالهای 1381 تا 1388 مورد استفاده قرار گرفت. طی فرایند مدلسازی داده های دبی 6 سال به عنوان داده های آموزش و بقیه به عنوان داده های آزمون انتخاب گردید. ارزیابی نتایج پیشبینیها با استفاده از معیارهای ضریب تبیین (R2) و ریشه دوم میانگین مربعات خطا (RMSE) نشان داد، سیستم استنتاج فازی- عصبی تطبیقی با دقت بالاتری (94/0= R2 و (متر مکعب بر ثانیه) 0318/0=RMSE ) نسبت به شبکههای عصبی مصنوعی (92/0= R2و (متر مکعب بر ثانیه) 0378/0 =RMSE) جریان روزانه رودخانه اهرچای را پیش بینی می کند.
منابع مشابه
پیش بینی جریان روزانه رودخانه اهرچای با استفاده از روش های شبکه های عصبی مصنوعی (ann) و مقایسه آن با سیستم استنتاج فازی- عصبی تطبیقی (anfis)
در طی سال های اخیر پیش بینی فرآیندهای هیدرولوژیکی به منظور بهره برداری پایدار از منابع آب با استفاده از روش های هوشمند مورد توجه دست اندرکاران بخش آب قرار گرفته است. در این تحقیق با بهره گیری از شبکه های عصبی مصنوعی (ann) و سیستم استنتاج فازی- عصبی تطبیقی (anfis) اقدام به پیش بینی دبی جریان روزانه رودخانه اهر چای واقع در استان آذربایجان شرقی در ایستگاه های اورنگ، برمیس و تازه کند گردید. برای مد...
متن کاملمقایسه کاربرد شبکه عصبی مصنوعی (ANN) با سیستم استنتاج فازی (FIS) در پیش بینی جریان رودخانه زاینده رود
یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدلسازی سیستمهایی که دارای پیچیدگی زیاد یا عدمصراحت بوده و یا دادههای کافی از آنها موجود نیست، استفاده از تئوری مجموعههای فازی و شبکه عصبی مصنوعی میباشد. مزیت اصلی این تکنیکها نسبت به روشهای رایج این است که در مدت زمان نسبتاً کوتاهی قادر به بررسی تأثیر انواع پارامترهای در دسترس، بر فرآیند مورد بررسی میباشند بدون آنکه در هر مرتبه نیاز به یافتن...
متن کاملپیشبینی جریان روزانه رودخانه اهرچای با استفاده از مدل قوانین M5 و مقایسه آن با شبکههای عصبی مصنوعی المانی (ENN)
برآورد صحیح آبدهی رودخانهها یکی از موارد مهم در پیشبینی خشکسالی، سیلاب، طراحی سازههای آبی، بهرهبرداری از مخازن سدها و کنترل رسوب میباشد. از اینرو متخصصان علوم مهندسی آب جهت برآورد دقیق جریان، از روشهای هوشمند مانند شبکههای عصبی مصنوعی و روشهای مختلف دادهکاوی بهره گرفتهاند. در این مطالعه، جهت پیشبینی جریان روزانه رودخانه اهرچای، از روشهای شبکه عصبی مصنوعی المانی (ENN) و قوانین درخت...
متن کاملمقایسه توانایی پیش بینی مدل های شبکه عصبی مصنوعی (ANN)، سیستم استنتاج عصبی- فازی انطباقی(ANFIS) و تبدیل موجک-عصبی: قیمت سبد نفت خام اوپک
پیش بینی قیمت نفت خام از مهم ترین موضوعات فرا روی اقتصاد انرژی است. پیش بینی مناسب قیمت نفت و آن هم قیمت نفت خام اوپک، به دلیل درگیر بودن تعدادی از کشورهای در حال توسعه این سازمان با قیمت نفت، می تواند در برنامه ریزی های سازمان و کشورهای عضو آن، اهمیت ویژه ای داشته باشد. برآورد و پیش بینی روند قیمت نفت، به خاطر نبود داده های تاریخی مهم و محدودیت اطلاعات مرتبط با شاخص های موثر بر روند قیمت نفت، ...
متن کاملپیش بینی جریان رودخانه با استفاده از سامانه استنتاج فازی(FIS) وسامانه استنتاج فازی- عصبی تطبیقی(ANFIS)
این مقاله فاقد چکیده میباشد.
متن کاملپیشبینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیشبینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیشبینیها1 (ESP) و تفکیک مدلسازی برای متغیرهای اقلیمیو هیدرولوژیکی، از مدلهای مفهومی برای پیشبینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده میشود. سیستم استنتاج فازی برای پیشبینی بار...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 22 شماره 1
صفحات 287- 298
تاریخ انتشار 2015-05-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023