پیشبینی تبخیر-تعرق مرجع با استفاده از شبکههای عصبی مصنوعی RBF ،MLP SVM
نویسندگان
چکیده مقاله:
تخمین تبخیر-تعرق گیاه مرجع یکی از مهمترین مؤلفهها در بهینهسازی مصرف آب کشاورزی و مدیریت منابع آب است. پیشبینی تبخیر-تعرق مرجع روزانه و هفتگی میتواند در پیشبینی نیاز آبی گیاهان و برنامهریزی کوتاهمدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی MLP(پرسپترون چندلایه)، RBF (شبکه تابع پایهای شعاعی)، SVM (ماشین بردار پشتیبان) در پیشبینی تبخیر-تعرق مرجع روزانه و هفتگی در ایستگاه همدیدی تبریز است. برای این منظور از دادههای هواشناسی با دوره آماری 39 ساله (2009-1971) استفاده شد. برای آموزش شبکههای عصبی 80 درصد سریهای زمانی ایجادشده بهتصادف انتخاب و 20 درصد دادهها برای صحتسنجی مدلهای پیشنهادی به کار رفتند. برای ایجاد سری زمانی تبخیر-تعرق مرجع روزانه و هفتگی در دوره موردنظر با استفاده از معادله استاندارد پنمن-مانتیث فائو 56 محاسبه گردید. ترکیبهای متفاوتی از دادههای ورودی (تأخیرهای مختلف) مورد ارزیابی قرار گرفت. نتایج مربوط به پیشبینی روزانه شبکههای عصبی نشان داد شبکه عصبی مصنوعی SVM-RBF kernel با تأخیر زمانی M5 دارای RMSE و R2 به ترتیب برابر با 0/51میلیمتر در روز و 0/92 بهترین عملکرد را داشت. همچنین نتایج مربوط به پیشبینی هفتروزه نشان داد که شبکه عصبی MLP با تأخیر زمانی M8 دارای RMSE و R2 به ترتیب برابر با 3/88 میلیمتر در هفته و 0/95 دارای بیشترین دقت بودند.
منابع مشابه
پیش بینی تبخیر-تعرق مرجع با استفاده از شبکه های عصبی مصنوعی rbf ،mlp svm
تخمین تبخیر-تعرق گیاه مرجع یکی از مهم ترین مؤلفه ها در بهینه سازی مصرف آب کشاورزی و مدیریت منابع آب است. پیش بینی تبخیر-تعرق مرجع روزانه و هفتگی می تواند در پیش بینی نیاز آبی گیاهان و برنامه ریزی کوتاه مدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی mlp(پرسپترون چندلایه)، rbf (شبکه تابع پایه ای شعاعی)، svm (ماشین بردار پشتیبان) در پیش بینی تبخیر-تعرق م...
متن کاملمقایسه عملکرد شبکههای عصبی RBF و MLP در برآورد تبخیر و تعرق گیاه مرجع
تبخیر و تعرق یکی از اجزای اصلی چرخهی هیدرولوژی است. این فرایند پیچیده به عوامل متعدد اقلیمی وابسته است. شبکههای عصبی مصنوعی در چند دههی اخیر و در مطالعات صورت گرفته برای مدلسازی سیستمهای پیچیده و غیر خطی قابلیت بسیار بالایی از خود نشان دادهاند. در تحقیق حاضر امکان استفاده از شبکههای با تابع پایهی شعاعی (RBF) و شبکههای پرسپترون چند لایه (MLP) برای تخمین تبخیر و تعرق گیاه مرجع مورد مطالع...
متن کاملمقایسه عملکرد شبکه های عصبی rbf و mlp در برآورد تبخیر و تعرق گیاه مرجع
تبخیر و تعرق یکی از اجزای اصلی چرخه ی هیدرولوژی است. این فرایند پیچیده به عوامل متعدد اقلیمی وابسته است. شبکه های عصبی مصنوعی در چند دهه ی اخیر و در مطالعات صورت گرفته برای مدل سازی سیستم های پیچیده و غیر خطی قابلیت بسیار بالایی از خود نشان داده اند. در تحقیق حاضر امکان استفاده از شبکه های با تابع پایه ی شعاعی (rbf) و شبکه های پرسپترون چند لایه (mlp) برای تخمین تبخیر و تعرق گیاه مرجع مورد مطالع...
متن کاملتخمین تبخیر- تعرق گیاه مرجع درون گلخانه با استفاده از شبکههای عصبی مصنوعی
امروزه شبکههای عصبی مصنوعی کاربرد بسیاری در مسائل مختلف مهندسی آب که رابطه و الگوی مشخصی بین عوامل مؤثر بر وقوع یک پدیده وجود ندارد، پیدا کردهاند. در این پژوهش جهت تخمین تبخیر- تعرق مرجع داخل گلخانه با استفاده از شبکههای عصبی مصنوعی، از دادههای هواشناسی اندازهگیری شده داخل گلخانه و همچنین دادههای اندازهگیری شده خارج گلخانه استفاده گردید. در این پژوهش از شبکههای عصبی مصنوعی با ساختار ...
متن کاملپیشبینی تبخیر-تعرق مرجع هفتگی با استفاده از مدل ترکیبی موجک- فازی عصبی تطبیقی
تبخیر-تعرقمرجع یکی ازمهمترین و مؤثرترین مؤلفهها در بهینهسازی مصرف آب کشاورزی و مدیریتمنابع آب میباشد. در سالهای اخیر استفاده از روشهای هوش مصنوعی و مدل هیبریدی بر پایه موجک در پیشبینی پارامترهای هیدرولوژیکی بسیار متداول گشته است. در مطالعه حاضر کاربرد روشهای ANFIS و موجک- ANFIS در پیشبینی تبخیر-تعرق مرجع هفتگی مرجع در ایستگاههای همدیدی تبریز، اهواز، بندرعباس و رامسر که دارای اقلیمهای...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 51- 63
تاریخ انتشار 2016-04-20
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023