پیشبینی بازدهی شاخص صنعت پتروشیمی در بورس اوراق بهادار تهران با استفاده از مدلهای ARIMA و ARFIMA
نویسندگان
چکیده مقاله:
پیش بینی متغیرهای اقتصادی از اهمیت ویژه ای در مباحث اقتصادی برخوردار است و مدل های مختلفی جهت پیش بینی مقادیر آتی متغیرها به وجود آمده اند. یکی از مهمترین کارکردهای مدل های اقتصادی، پیش بینی مقادیر آتی متغیرهای اقتصادی می باشد. در حقیقت مدل های اقتصادی را می توان از طریق بررسی میزان دقت پیش بینی مورد آزمون قرار داد. بدین صورت که اگر یک مدل اقتصادی در تبیین روابط موجود بین متغیرها موفق باشد، باید بتواند پیش بینی صحیحی از آینده متغیرها نیز ارائه نماید. هدف اصلی این مقاله پیش بینی بازدهی شاخص یکی از مهمترین و تاثیرگذارترین صنایع کشور،صنعت پتروشیمی، است. نتایج آماری وجود حافظه بلندمدت در بازدهی این صنعت را تایید میکنند، لذا برای پیش بینی شاخص صنعت پتروشیمی از دو مدل اقتصادسنجی شامل ARFIMA و ARIMA استفاده شده است. به طوریکه، مدل ARFIMA با در نظر گرفتن حافظه بلندمدت و مدل ARIMA بدون در نظر گرفتن حافظه بلندمدت مدنظر قرار گرفتند. ارزیابی میزان دقت پیش بینی دو مدل مذکور با استفاده از دادههای روزانه شاخص صنعت پتروشیمی در بوررس اوراق بهادار تهران در بازه زمانی 24/03/1384 الی 25/05/ 1394نشان میدهد که با تفاوت اندکی مدل ARFIMA بهتر از مدل ARIMA عمل کرده است، ولی با توجه به مشکلات برآورد ضرایب مدل ARFIMA و سادگی مدل ARIMA، این تفاوت اندک قابل چشم پوشی است و میتوان از مدل ARIMA برای پیش بینی بازدهی صنعت پتروشیمی استفاده کرد.
منابع مشابه
پیشبینی شاخص کل بورس اوراق بهادار تهران با مدل ARFIMA
در این مقاله با استفاده از دادههای روزانة شاخص کل بورس اوراق بهادار تهران در دورة زمانی 6/1/1382 تا 14/4/1386، به بررسی ویژگی حافظة بلند این شاخص پرداخته و مدل ARFIMA را بر آن برازش میدهیم. همچنین عملکرد پیشبینی مدل ARFIMA را با مدل ARIMA مقایسه میکنیم. نتایج نشان میدهند که اولاٌ این سری زمانی از نوع حافظة بلند است، بنابراین میتوان با تفاضلگیری کسری آن را مانا کرد. پارامتر تفاضلگیری ب...
متن کاملمقایسه قابلیتهای مدلهای مبتنی بر حافظه بلندمدت و مدل های شبکه عصبی پویا در پیشبینی بازدهی بورس اوراق بهادار تهران
این مقاله با هدف معرفی یک الگوی مناسب جهت پیشبینی شاخص بازدهی بورس اوراق بهادار تهران صورت پذیرفته است. دادههای مورد استفاده در این پژوهش به صورت روزانه و شامل بازهی زمانی پنجم فروردین 1388 تا سیام آبان 1390 که مشتمل بر 616 مشاهده بوده که جهت مجزا سازی پیشبینیهای داخل نمونهای و خارج از نمونهای، از تقریباً 90% از مشاهدات (556 مشاهده) جهت تخمین ضرایب مدل و از مابقی (60 مشاهده) جهت انجام پی...
متن کاملپیشبینی شاخص کل بورس اوراق بهادار تهران با مدل arfima
در این مقاله با استفاده از دادههای روزانة شاخص کل بورس اوراق بهادار تهران در دورة زمانی 6/1/1382 تا 14/4/1386، به بررسی ویژگی حافظة بلند این شاخص پرداخته و مدل arfima را بر آن برازش میدهیم. همچنین عملکرد پیشبینی مدل arfima را با مدل arima مقایسه میکنیم. نتایج نشان میدهند که اولاٌ این سری زمانی از نوع حافظة بلند است، بنابراین میتوان با تفاضلگیری کسری آن را مانا کرد. پارامتر تفاضلگیری به...
متن کاملمقایسه قابلیتهای مدلهای مبتنی بر حافظه بلندمدت و مدل های شبکه عصبی پویا در پیشبینی بازدهی بورس اوراق بهادار تهران
این مقاله با هدف معرفی یک الگوی مناسب جهت پیشبینی شاخص بازدهی بورس اوراق بهادار تهران صورت پذیرفته است. دادههای مورد استفاده در این پژوهش به صورت روزانه و شامل بازهی زمانی پنجم فروردین 1388 تا سیام آبان 1390 که مشتمل بر 616 مشاهده بوده که جهت مجزا سازی پیشبینیهای داخل نمونهای و خارج از نمونهای، از تقریباً 90% از مشاهدات (556 مشاهده) جهت تخمین ضرایب مدل و از مابقی (60 مشاهده) جهت انجام پی...
متن کاملپیشبینی شاخص بورس اوراق بهادار تهران با استفاده از انفیس
هدف اصلی این تحقیق بررسی پیشبینی پذیری شاخص قیمت و بازده نقدی بورس اوراق بهادار تهران به کمک انفیس و یافتن مدل مناسب برای پیشبینی شاخص بورس اوراق بهادار تهران (تدپیکس) بوده است. بدین منظور، نخست سه متغیر کلان اقتصادی به همراه مقادیر تاریخی شاخص تدپیکس به عنوان ورودیهای مدل انتخاب شدند؛ سپس ساختارهای گوناگون انفیس و شبکه عصبی مصنوعی پسانتشار خطا برای بررسی پیشبینی پذیری و شناسایی مدل مناسب ...
متن کاملپیشبینی و مدلسازی تلاطم بازدهی سهام در بورس اوراق بهادار تهران با استفاده از مدلهای GARCH
هدف از این پژوهش مدلسازی و مقایسه قدرت پیشبینی کنندگی مدلهای GARCH در پیشبینی تلاطم بازدهی سهام در بورس اوراق بهادار تهران است. ازاینرو دوره زمانی 1/1/1388 تا 30/12/1395 بر مبنای بازدهی روزانه شاخص کل قیمت (TEPIX) شامل 1900 مشاهده انتخاب شد و مدلهای GARCH، EGARCH، PGARCH، GJR، GARCH-M،FIGARCH و FIEGARCH با رویکرد سری زمانی و تحت فرض توزیع مجانبی نرمال ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره پاییز و زمستان 1395
صفحات 15- 26
تاریخ انتشار 2017-02-19
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023