مقایسۀ عملکرد مدل درختی M5 با مدل‌های شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان در استخراج منحنی تداوم جریان مطالعۀ موردی: ایستگاه خزانگاه رودخانۀ ارس

نویسندگان

چکیده مقاله:

یکیاز مهم­ترینو پرکاربردترینعلائمپاسخهیدرولوژیکحوزه، منحنیتداومجریان استو درکاربرد‌هایهیدرولوژیکیبی‌شماری برای آنالیز فراوانیجریان­هایکمینهو سیلابمورد استفادهقرار می­گیرد. برای نمایش محدودۀ کامل دبی رودخانه، از جریان‌های حداقل تا حداکثر سیلاب و منحنی تداوم جریان  (FDC)استفاده می‌شود؛ بنابراین استخراج دقیق این منحنی‌ها با حداقل خطا حائز اهمیت فراوانی است. در این مطالعه کارایی مدل درختی M5 در استخراج منحنی تداوم جریان در مقایسه با شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان برای ایستگاه خزانگاه رودخانۀ ارس واقع در استان آذربایجان شرقی بررسی شد.با توجه به نتایج به دست آمده در مدل درختی M5، ترکیب 80% داده­ها برای آموزش و مابقی برای تست مدل، بهترین عملکرد را در ارائۀ منحنی تداوم جریان با 992/0R2=، (m3/s)47/5RMSE= و (m3/s) 38/4MAE= نشان داد. با بررسی نتایج مدل‌های مختلف شبکۀ عصبی، بهترین مدل با 2 نرون برای لایه مخفی با مقادیر 997/0R2=، (m3/s) 91/3RMSE= و (m3/s) 30/3MAE= به‌دست آمد.بررسی عملکرد کرنل RBF مدل ماشین بردار پشتیبان نشان داد که این مدل بهترین عملکرد را در شبیه‌سازی منحنی تداوم جریان داشت؛ به‌طوری‌که دارای حداقل مقدار مجذور میانگین مربع‌های خطا ((m3/s) 98/2RMSE=)، بالاترین ضریب همبستگی (998/0R2=) و کمترین مقدار خطای نسبی ((m3/s) 66/2MAE=) بود. مقایسۀ نتایج بین انواع مدل‌های هوشمند مورد بررسی، بیانگر این است که هر سه مدل در تخمین مقادیر دبی منحنی تداوم جریان عملکرد مناسبی دارند؛ اما مدل درختی M5 به علت سادگی محاسبات و ارائۀ روابط شده، به لحاظ کاربردی قابلیت بیشتری می­تواند در استخراج منحنی تداوم داشته باشد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش‎بینی مقادیر بارش ماهانه با استفاده از شبکه‎های عصبی مصنوعی و مدل درختی M5 (مطالعۀ موردی: ایستگاه اهر)

بارش یکی از مهم‎ترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا می‎کند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامه‎ریزی آبیاری و مدیریت حوضه‎های آبریز، اهمیت زیادی دارد. پیش‎بینی بارش در هر منطقه‎ای نیازمند وجود داده‎های دقیق اندازه‎گیری‎شده‎ای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیت‎هایی چون، نبود اطلاعات کافی در مو...

متن کامل

ارزیابی عملکرد شبکۀ عصبی مصنوعی (ann) و ماشین بردار پشتیبان (svm) در تخمین مقادیر روزانۀ تبخیر (مطالعۀ موردی: ایستگاه های هواشناسی تبریز و مراغه)

تبخیر مؤلفه‏ای اساسی در چرخه هیدرولوژی است و نقش مهمی در مدیریت منابع آب دارد. در این تحقیق عملکرد مدل‏های شبکه عصبی مصنوعی (ann) و ماشین بردار پشتیبان (svm) در تخمین تبخیر روزانه ارزیابی شده است. داده‏های روزانه هواشناسی میانگین دما، سرعت باد، فشار هوا، رطوبت نسبی، بارش، دمای نقطه شبنم، و ساعت آفتابی ایستگاه‏های سینوپتیک تبریز و مراغه، به منزله ورودی مدل‏های ann و svm، برای تخمین تبخیر روزانه ...

متن کامل

ارزیابی عملکرد روش‌های مدل درختی M5 و رگرسیون بردار پشتیبان در مدل‌سازی رسوب معلق رودخانه

همواره پدیده انتقال رسوب، بسیاری از سازه‌‌های رودخانه‌‌ای و سازه‌های عمرانی را تحت تاثیر قرار داده و عدم اطلاع از میزان دقیق آن خسارات بسیاری را موجب می‌شود. از این جهت برآورد صحیح بار رسوبی در رودخانه‌ها از نقطه نظر رسوب، فرسایش و کنترل سیلاب بسیار حایز اهمیت است. در این تحقیق، از دو روش نوین داده‌کاوی شامل مدل درختی M5 و رگرسیون بردار پشتیبان برای برآورد بار رسوبی معلق رودخانه اهرچای در مقایس...

متن کامل

ارزیابی عملکرد شبکۀ عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در تخمین مقادیر روزانۀ تبخیر (مطالعۀ موردی: ایستگاه‌های هواشناسی تبریز و مراغه)

تبخیر مؤلفه‏ای اساسی در چرخة هیدرولوژی است و نقش مهمی در مدیریت منابع آب دارد. در این تحقیق عملکرد مدل‏های شبکة عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در تخمین تبخیر روزانه ارزیابی شده است. داده‏های روزانة هواشناسی میانگین دما، سرعت باد، فشار هوا، رطوبت نسبی، بارش، دمای نقطة شبنم، و ساعت آفتابی ایستگاه‏های سینوپتیک تبریز و مراغه، به منزلة ورودی مدل‏های ANN و SVM، برای تخمین تبخیر روزانه ...

متن کامل

پیش‎بینی مقادیر بارش ماهانه با استفاده از شبکه‎های عصبی مصنوعی و مدل درختی m5 (مطالعۀ موردی: ایستگاه اهر)

بارش یکی از مهم‎ترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا می‎کند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامه‎ریزی آبیاری و مدیریت حوضه‎های آبریز، اهمیت زیادی دارد. پیش‎بینی بارش در هر منطقه‎ای نیازمند وجود داده‎های دقیق اندازه‎گیری‎شده‎ای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیت‎هایی چون، نبود اطلاعات کافی در مو...

متن کامل

مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی

Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of  this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 15  شماره 49

صفحات  129- 142

تاریخ انتشار 2017-12-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023