مقایسه ضرایب تشت برآورد شده با استفاده از روش‌های تجربی، شبکه عصبی مصنوعی و عصبی- فازی در برآورد تبخیر و تعرق گیاه مرجع

نویسندگان

  • علی‌اکبر سبزی‌پرور دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی‌سینا، همدان، ایران
  • مجتبی شادمانی کارشناس ارشد مهندسی آبیاری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی‌سینا، همدان، ایران
چکیده مقاله:

در این تحقیق کارایی روش‌های متفاوت تجربی (کوینکا، اشنایدر، اورنگ، آلن و پرویت، مدل راگووانشی و والندر، اشنایدر اصلاح شده، پریرا) در مقایسه با شبکه عصبی مصنوعی (ANN) و سامانه استنتاج عصبی- فازی تطبیقی (ANFIS)در برآورد ضریب تشت رده A و تبخیر و تعرق گیاه مرجع، در یک اقلیم گرم و خشک مورد ارزیابی قرار گرفت. بدین‌منظور از آمار 10 ساله مربوط به اندازه‌گیری روزانه تبخیر از تشت استفاده شد. با توجه به کمبود داده‌های لایسیمتری، به‌منظور محاسبه میزان تبخیر و تعرق مرجع، از روش استاندارد پنمن مانتیت- فائو 56 استفاده شد. در دو روش شبکه عصبی مصنوعی و عصبی- فازی مقادیر سرعت باد، رطوبت نسبی هوا و طول سبزینگی، درحکم متغیرهای ورودی و ضریب تشت که با استفاده از روش پنمن مانتیت- فائو 56 محاسبه شده بود، درحکم متغیر خروجی به‌کار گرفته شد. برای ارزیابی کارایی هریک از روش‌های به‌کار رفته از ضریب تعیین، جذر میانگین مربعات خطا و میانگین خطای مطلق استفاده شد. نتایج این تحقیق روشن ساخت که روش عصبی- فازی (ANFIS) نسبت به روش‌های دیگر نتایج بهتری در برآورد ضریب تشت و تبخیر و تعرق مرجع به‌دست می‌دهد. از بین روش‌های تجربی برآورد ضریب تشت، روش‌های کوینکا و اشنایدر بعد از روش‌های شبکه عصبی در برآورد ضریب تشت در اقلیم‌های گرم و خشک توصیه می‌شود.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه ضرایب تشت برآورد شده با استفاده از روش های تجربی، شبکه عصبی مصنوعی و عصبی- فازی در برآورد تبخیر و تعرق گیاه مرجع

در این تحقیق کارایی روش های متفاوت تجربی (کوینکا، اشنایدر، اورنگ، آلن و پرویت، مدل راگووانشی و والندر، اشنایدر اصلاح شده، پریرا) در مقایسه با شبکه عصبی مصنوعی (ann) و سامانه استنتاج عصبی- فازی تطبیقی (anfis)در برآورد ضریب تشت رده a و تبخیر و تعرق گیاه مرجع، در یک اقلیم گرم و خشک مورد ارزیابی قرار گرفت. بدین منظور از آمار 10 ساله مربوط به اندازه گیری روزانه تبخیر از تشت استفاده شد. با توجه به کم...

متن کامل

برآورد تبخیر از تشت تبخیر ایستگاه سد تنظیمی دز با استفاده از روش شبکه عصبی مصنوعی

بیشتر بارندگی مناطق خشک و نیمه خشک بصورت تبخیر به جو باز می گردد پس تخمین تبخیر دربرآورد میزان آب در چرخه آب مهم خواهد بود. تبخیر وابسته به پارامترهای مختلفی است و برای برآورد آن نیاز به متغیرهای اقلیمی متفاوتی است و اثر متقابل این متغیرها بسیار پیچیده است لذا در بررسی آن باید روشهای دقیقی را بکار گرفت. در این تحقیق برای برآورد تبخیر از تشت ایستگاه سد تنظیمی دز از روش شبکه عصبی مصنوعی استفاده ش...

متن کامل

برآورد تبخیر و تعرق مرجع با استفاده از مدل‌های تجربی، مدل‌سازی آن با شبکه عصبی مصنوعی و مقایسه آن‌ها با داده‌های لایسیمتری در ایستگاه کهریز ارومیه

یکی از راه‌های کاهش تلفات آب در مزارع، برنامه­ریزی صحیح آبیاری می­باشد و اساس این برنامه­ریزی را برآورد دقیق نیاز آبی گیاهان تشکیل می­دهد که ضریبی از تبخیر و تعرق مرجع است. تبخیر و تعرق مرجع یک پدیده چند متغیره و پیچیده است که به عوامل متعدد اقلیمی بستگی دارد و دقیق­ترین روش­ برای برآورد آن، لایسیمتر است اما استفاده از لایسیمتر، مستلزم وقت و هزینه زیادی است، از این رو تخمین تبخیر و تعرق با استف...

متن کامل

مقایسه عملکرد شبکه‌های عصبی RBF و MLP در برآورد تبخیر و تعرق گیاه مرجع

تبخیر و تعرق یکی از اجزای اصلی چرخه‌ی هیدرولوژی است. این فرایند پیچیده به عوامل متعدد اقلیمی وابسته است. شبکه‌های عصبی مصنوعی در چند دهه‌ی اخیر و در مطالعات صورت گرفته برای مدل‌سازی سیستم‌های پیچیده و غیر خطی قابلیت بسیار بالایی از خود نشان داده‌اند. در تحقیق حاضر امکان استفاده از شبکه‌های با تابع پایه‌ی شعاعی (RBF) و شبکه‌های پرسپترون چند لایه (MLP) برای تخمین تبخیر و تعرق گیاه مرجع مورد مطالع...

متن کامل

مقایسه عملکرد شبکه های عصبی rbf و mlp در برآورد تبخیر و تعرق گیاه مرجع

تبخیر و تعرق یکی از اجزای اصلی چرخه ی هیدرولوژی است. این فرایند پیچیده به عوامل متعدد اقلیمی وابسته است. شبکه های عصبی مصنوعی در چند دهه ی اخیر و در مطالعات صورت گرفته برای مدل سازی سیستم های پیچیده و غیر خطی قابلیت بسیار بالایی از خود نشان داده اند. در تحقیق حاضر امکان استفاده از شبکه های با تابع پایه ی شعاعی (rbf) و شبکه های پرسپترون چند لایه (mlp) برای تخمین تبخیر و تعرق گیاه مرجع مورد مطالع...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 38  شماره 1

صفحات  229- 240

تاریخ انتشار 2012-04-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023