مدل شبکه عصبی مصنوعی برای تخمین رسوبدهی حوزههای آبخیز
نویسندگان
چکیده مقاله:
امروزه رسوبدهی حوزههای آبخیز از جمله مشکلات بهرهبرداری از منابع آبهای سطحی در جهان است. با توجه به نقش و اهمیت رسوب در عمر مفید سدهای کشور، عدم توجه به اندازهگیری و محاسبه دقیق آن، باعث اتلاف سرمایههای ملی میشود. بدیهی است که دقت تخمین میزان رسوبدهی، بستگی زیادی به روشهای محاسباتی، معادلات ارائه شده و دادهها یا اطلاعات تخمین رسوب دارد. چون عوامل مختلفی در فرسایش و تولید رسوب مؤثر است و بر اساس شرایط هر حوزه ممکن است یک یا چند عامل در تشدید آن مؤثر باشد.از این رو، برای بررسی مسئله رسوبدهی هر حوزه باید عوامل مختلف مؤثر در رسوبدهی آن منطقه را شناسایی و بهطور صحیح برآورد کرد و سپس تأثیر عوامل مختلف را بر روی رسوبدهی مشخص نمود. در این تحقیق، شبکههای عصبی مصنوعی بهعنوان روشی جدید برای تخمین رسوبدهی حوزه، بهکار گرفته شده است. شبکهای با ساختار و آموزش مناسب و دادههای کافی، قادر است تأثیرات و ارتباط بین رسوب و سایر متغیرهای مؤثر در رسوبدهی را بدون استفاده از روابط اختصاصی و معادلات مربوطه فراگیرد. برای تخمین رسوبدهی زیرحوزهها، از ساختار MLP استفاده شد. پس از آموزش و آزمایش دادهها،بهترین حالت در نظر گرفته شده و سپس با روش رگرسیونهای چندمتغیره مقایسه شد. نتایج نشاندهنده بهبود قابل توجهی در محاسبه و تخمین رسوب و کارآیی روش شبکههای عصبی نسبت بهروش رگرسیونهای چند متغیره است.
منابع مشابه
عملکرد مدل شبکه عصبی مصنوعی و شبکه عصبی فازی تطبیقی در تخمین غلظت ذرات معلق در هوای شهر تهران
در سالهای اخیر رشد روز افزون جمعیت ، وسایل نقلیه و کارخانهها باعث افزایش آلودگی هوا و ایجاد مشکلات زیادی برای محیط زیست بشر و سلامتی انسان شده است. یکی از مهمترین آلایندهها، ذراتمعلق میباشد که سبب بروز مشکلات تنفسی و قلبی در انسان میشود. هدف از این مطالعه مقایسه مدلهای شبکهعصبیمصنوعی و شبکهعصبیفازی-تطبیقی در تخمین غلظت ذرات معلق در شهر تهران میباشد. در...
متن کاملمدل شبکه عصبی مصنوعی برای تخمین رسوب دهی حوزه های آبخیز
امروزه رسوب دهی حوزه های آبخیز از جمله مشکلات بهره برداری از منابع آب های سطحی در جهان است. با توجه به نقش و اهمیت رسوب در عمر مفید سدهای کشور، عدم توجه به اندازه گیری و محاسبه دقیق آن، باعث اتلاف سرمایه های ملی می شود. بدیهی است که دقت تخمین میزان رسوب دهی، بستگی زیادی به روش های محاسباتی، معادلات ارائه شده و داده ها یا اطلاعات تخمین رسوب دارد. چون عوامل مختلفی در فرسایش و تولید رسوب مؤثر است ...
متن کاملتخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی
در سالهای اخیر با بهرهگیری از روشهای مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونههای سنگی مورد بررسی قرار گرفته است. اغلب گسیختگیهای رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ میباشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگیها در حفریات سطحی و زیرزمینی از اهمیت ویژهای برخوردار میباشد. بررسی جامع دستاوردهای علمیدر خصوص تعیین سختی برش...
متن کاملتخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی
بتن یکی از رایجترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا میکند. در سالهای اخیر با بهرهگیری از روشهای مختلف آزمایشگاهی، پارامترهای شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامترها در طراحی سازههای سطحی و زیرسطحی از اهمیت ویژهای برخوردار است. در این مقاله مدل شکست بر اساس شبکه عصبی برای تخمین پارامترشکست بتن GF(انرژی مخصوص شکس...
متن کاملارائه یک مدل شبکه عصبی مصنوعی برای تخمین نفوذ آب در خاک بر اساس پارامترهای مدلهای SCS و کوستیاکوف
Infiltration of water into the soil accounts as a phenomenon in which most of researchers and scientists are interested so it acts a prominent role in the water cycling. Owing to temporal and spatial variation of infiltration, measuring of it in a direct way requires a long time and high cost. Thus, using a method for measuring the soil infiltration in an indirect way instead of direct way for ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 1
صفحات 1- 11
تاریخ انتشار 2011-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023