مدلسازی دمای روزانۀ خاک با استفاده از دادههای سینوپتیکی و شبکۀ عصبی
نویسندگان
چکیده مقاله:
دمای خاک یکی از مهمترین پارامترهای تأثیرگذار بر روی فرایندهای هیدرولوژیکی میباشد و یکی از عوامل مؤثر در استقرار پوشش گیاهی در مناطق خشک است. بررسیها نشان داده است دمای خاک تحت تأثیر پارامترهایی از قبیل متوسط دمای هوای روزانه، حداقل و حداکثر دمای روزانه، تبخیر، تابش خورشیدی، تعداد ساعات آفتابی و بارش میباشد؛ شناخت از مدل تغییرات دما در اعماق مختلف خاک میتواند در تعیین نیاز آبی گیاهان و فعالیتهای بیولوزیکی بسیار مؤثر باشد. با توجه به اهمیت موضوع، در این مطالعه از دادههای سینوپتیکی اصفهان بهمنظور مدلسازی دمای خاک در عمق 5 تا 100 سانتی متری خاک با استفاده از شبکۀ عصبی– مصنوعی استفاده شد. نتایج نشان داد که خطای مدل با افزایش عمق افزایش پیدا میکند بهطوریکه بیشترین خطای مدل در عمق 100 سانتیمتری و کمترین خطای مدلها در عمق 10 سانتیمتر از سطح میباشد. همچنین نتایج نشان داد افزایش خطای مدلهای شبکۀ عصبی مصنوعی در شبیهسازی تغییرات دمای خاک در لایههای عمقی میباشد و علت اصلی افزایش کارایی مدلهای هوش مصنوعی در شبیهسازی دمای خاک در لایههای سطحی نسبت به لایههای تحتانی عمدتاً مربوط به کاهش همبستگی بین پارامترهای اقلیمی و تغییرات دمای خاک در لایههای تحتانی نسبت به لایههای فوقانی است. به طوری که ضریب تغییرپذیری دمای خاک با افزایش عمق نسبت به لایههای سطحی کمتر است و کمتر تحت تأثیر متغیرهای اقلیمی از جمله دمای خاک قرار میگیرد.
منابع مشابه
برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی
دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیمشناسی است که اندازهگیری و برآورد آن ضروری است. با توجه به اینکه دمای خاک فقط در ایستگاههای سینوپتیک کشور اندازهگیری میشود، کمبود آن در نقاط فاقد ایستگاه از چالشهای بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...
متن کاملمدلسازی جریان روزانۀ رودخانه با استفاده از برنامهریزی ژنتیک و شبکۀ عصبی (مطالعۀ موردی: حوضۀ آبخیز معرّف امامه)
فرایند بارش- رواناب پیچیده و غیرخطی است و مدلسازی آن به دلیل عدم قطعیتهای زیاد یکی از مهمترین دغدغههای پژوهشگران در حیطة مسائل منابع آب بهشمار میرود. از بین روشهای مورد استفاده، مدلهای هوشمند در پیشبینی چنین فرایندهایی مفید و مؤثرند. بنابراین، به منظور مدلسازی جریان رودخانه از روشهای شبکة عصبی مصنوعی و همچنین برنامهریزی ژنتیک به منزلة روشی صریحـ که جزو الگوریتمهای تکاملی بهشمار م...
متن کاملمدلسازی حجم تجاری درختان تودههای آمیختۀ راش جنگلهای هیرکانی با استفاده از شبکۀ عصبی مصنوعی
پیشبینی دقیق حجم درختان سرپا برحسب متر مکعب مبنای برآورد هر چه دقیقتر مقدار رویش، برداشت مجاز، ترسیب کربن زیتودۀ هوایی درختان و مدیریت بهینۀ جنگل براساس اصل توسعۀ پایدار محسوب میشود. از اینرو، تحقیق حاضر با استفاده از شبکۀ عصبی مصنوعی در پی مدلسازی و پیشبینی حجم تجاری با حداکثر قطعیت است. پژوهش موردی جنگل سری 3 گلندرود نور بوده و اطلاعات دریافتی مستخرج از جدولهای تجدید حجم ادارۀ کل منابع...
متن کاملبرآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی
دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیمشناسی است که اندازهگیری و برآورد آن ضروری است. با توجه به اینکه دمای خاک فقط در ایستگاههای سینوپتیک کشور اندازهگیری میشود، کمبود آن در نقاط فاقد ایستگاه از چالشهای بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...
متن کاملطراحی شبکۀ جادۀ جنگلی با استفاده از شبکۀ عصبی مصنوعی و GIS
جادههای جنگلی بهمنظور ایجاد دسترسی به جنگل احداث میشوند و تأثیر زیربنایی در سازماندهی منطقه دارند. هدف این پژوهش، معرفی راهکاری هوشمند مبتنی بر شبکههای عصبی مصنوعی با تلفیق GIS برای طراحی شبکۀ جادۀ جنگلی با در نظر داشتن اصول و معیارهای فنی شبکۀ جادۀ جنگلی است. ابتدا معیارهای مؤثر با استفاده از روش دلفی شناسایی شد و وزندهی آنها با استفاده از روش AHP، انجام گرفت. با تلفیق لایههای مختلف و وز...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 71 شماره 1
صفحات 285- 295
تاریخ انتشار 2018-05-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023