مدل‌سازی دبی جریان رودخانه با استفاده از مدل‌های چندمتغیره تلفیقی سری زمانی

نویسندگان

چکیده مقاله:

چکیده بیش از سه دهه است که هیدرولوژیست­ها، استفاده از مدل­های چند متغیره را جهت توصیف و مدل­سازی داده­های پیچیده هیدرولوژی، توصیه می­کنند. درحالی که به تازگی اهمیت مدل­های چند متغیره در هیدرولوژی مطرح شده است. در واقع در مدل­های چند متغیره با دخالت دادن عوامل مؤثر هواشناسی، می­توان نتایج توصیف، مدل­سازی و  پیش­بینی پارامترهای مختلف را بهبود بخشید. هم­چنین از آنجا که مدل­های غیرخطی واریانس شرطی، بخش باقی­مانده مدل­های خطی را به شکل مناسبی مدل می­کنند، انتظار می­رود با ترکیب مدل­های خطی و غیرخطی، دقت مدل­سازی و پیش­بینی­ها افزایش یابد. در این مطالعه دو مدل چند متغیره دوره­ای آرما و چند متغیره تلفیقی با واریانس شرطی جهت مدل­سازی دبی ماهانه رودخانه­های نازلوچای، بابلرود و هامون به ترتیب واقع در استان­های آذربایجان غربی، مازندران و سیستان و بلوچستان در دوره آماری 1390-1341 (50 ساله) تحت تأثیر پارامترهای دما و بارش ایستگاه سینوپتیک حوضه­ها مورد مقایسه قرار گرفتند. نتایج بررسی و صحت سنجی داده­های مدل­شده نشان داد که هر دو مدل مورد بررسی از دقت بالایی برخوردار هستند. در این مطالعه در تمام موارد مدل چند متغیره تلفیقی با واریانس شرطی از دقت بیشتری نسبت به مدل چند متغیره دوره­ای آرما برخوردار بودند. هم­چنین نتایج نشان داد که با ترکیب دو مدل ذکر شده، میزان خطای مدل (جذر میانگین مربعات خطا) به ترتیب در ایستگاه­های نازلوچای، بابلرود و هامون حدود 30، 17 و 1 درصد بهبود می­یابد. به‌طور کلی نتایج نشان داد که کاربرد هر دو مدل مورد استفاده در مناطق معتدل ایران دقت بالاتری دارد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی دبی جریان رودخانه با استفاده از داده کاوی و سری زمانی

شبیه­سازی جریان رودخانه به‌منظور آگاهی از دبی رودخانه در دوره‌های زمانی آینده از مسائل مهم و کاربردی است. با توجه به اهمیت اطلاع از دبی جریان در سال­های آینده، در این مطالعه دبی جریان در سه ایستگاه حاجی‌قوشان، قره‌شور و تمر در حوضۀ آبخیز گرگانرود برای سال­های آبی 90-1381 شبیه­سازی شد. به‌منظور شبیه­سازی از روش آماری سری زمانی در قالب الگوی اتورگرسیون (AR) و داده‌کاوی در قالب ماشین بردار پشتیبان...

متن کامل

پیش بینی دبی جریان رودخانه با استفاده از داده کاوی و سری زمانی

شبیه­سازی جریان رودخانه به منظور آگاهی از دبی رودخانه در دوره های زمانی آینده از مسائل مهم و کاربردی است. با توجه به اهمیت اطلاع از دبی جریان در سال­های آینده، در این مطالعه دبی جریان در سه ایستگاه حاجی قوشان، قره شور و تمر در حوضۀ آبخیز گرگانرود برای سال­های آبی 90-1381 شبیه­سازی شد. به منظور شبیه­سازی از روش آماری سری زمانی در قالب الگوی اتورگرسیون (ar) و داده کاوی در قالب ماشین بردار پشتیبان...

متن کامل

پیش‌بینی دبی ماهانه رودخانه کاکارضا با استفاده از مدل‌های سری زمانی، ARIMA فصلی

    بررسی و شناخت تغییرات زمانی دبی پایه در مطالعات حوزه‌های آبخیز بخصوص در فصول با جریان کم‌ اهمیت زیادی دارد. به همین منظور مدل‌های مختلف آماری و احتمالاتی ارائه و توسعه داده‌شده است. هدف از این پژوهش بررسی سری زمانی30 ساله مربوط به دبی متوسط ماهانه رودخانه کاکارضا در شهرستان سلسله در استان لرستان می‌باشد. در گام اول توابع خودهمبستگی و خودهمبستگی جزئی داده‌های واقعی در نرم‌افزار XLSTAT ترسیم ...

متن کامل

مدلسازی هوشمند سری زمانی جریان ماهانه حوضه رودخانه شور قروه با شبکه عصبی مصنوعی

پیش بینی دقیق جریان در رودخانه ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه اتخاذ تدابیری مناسب در مواقع سیلاب و بروز خشکسالی هاست. در حقیقت حصول روشهای مناسب و دقیق در پیش بینی جریان رودخانه ها را می توان به عنوان یکی از چالشها در فرآیند مدیریت و مهندسی منابع آب دانست. در این پژوهش برای مدلسازی هوشمند سری زمانی جریان ماهانه از یک دوره ی آماری26ساله (1389-1364) استفاده شد. جهت دست...

متن کامل

ارزیابی عملکرد مدل‌های سری زمانی چند متغیره تلفیقی، MPAR و MPAR-ARCH در مدل‌سازی دبی جریان رودخانه با درنظر گرفتن عوامل مؤثر هواشناسی (مطالعه موردی: رودخانه نازلوچای)

بیش از سه دهه است که هیدرولوژیست­ها، استفاده از مدل­های چندمتغیره را جهت توصیف و مدل­سازی پدیده­های پیچیده هیدرولوژی، توصیه می­کنند. در مدل­های چند متغیره با دخالت دادن عوامل مؤثر، می­توان نتایج توصیف، مدل­سازی و پیش­بینی متغیرهای مختلف را بهبود بخشید. هم­چنین از آنجا که مدل­های غیر­خطی واریانس ناهمسان شرطی، بخش باقی­مانده مدل­های خطی را به‌طور رضایت­بخشی مدل می­کنند، انتظار می­رود، با ترکیب مد...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 4

صفحات  47- 63

تاریخ انتشار 2018-08-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023