مدل‌سازی بار رسوب کل رودخانه‌ها با استفاده از شبکه‌های عصبی مصنوعی

نویسندگان

  • سید احمد احمدی کارشناس ارشد سازه‌های هیدرولیکی
  • عبدالحسین بغلانی استادیار دانشکده عمران و محیط¬زیست؛ دانشگاه صنعتی شیراز؛ ایران
  • مهناز اسکندری باشگاه پژوهشگران جوان؛ دانشگاه آزاد اسلامی؛ واحد علوم و تحقیقات؛ تهران؛ ایران
چکیده مقاله:

برآورد بار رسوب کل رودخانه­ها از مسائل مهم و کاربردی در مدیریت و برنامه­ریزی منابع آب است. غلظت رسوب می­تواند به روش­های مستقیم و یا غیرمستقیم محاسبه شود که معمولاً روش­های مستقیم پرهزینه و زمان­بر هستند. همچنین بار رسوب کل می­تواند به کمک روابط مختلف انتقال رسوب محاسبه شود، لیکن به طور معمول کاربرد این روابط نیاز به شرایط معینی داشته و به علاوه در بیشتر موارد نتایج حاصل از آن­ها با یکدیگر و با مقادیر اندازه­گیری شده متفاوت است. هدف از این پژوهش ارائه روشی بر پایه شبکه­های عصبی مصنوعی (ANN) در تخمین بار رسوب کل بود. بدین منظور از دو نوع شبکه عصبی پرسپترون چند لایه (MLP) و توابع پایه شعاعی (RBF) و 200 نمونه، استفاده شد. 75 درصد از داده­ها برای آموزش و 25 درصد برای آزمون شبکه­ها در نظر گرفته شدند. متغیرهای ورودی مدل­ها شامل سرعت متوسط جریان، شیب کف آبراهه، عمق متوسط، عرض آبراهه و قطر میانه ذرات رسوب و خروجی مدل، غلظت رسوب بود. متغیرهای ورودی مرحله به مرحله به شبکه­ها اضافه شدند و هر بار نتایج ارزیابی شد تا مناسب­ترین مدل تعیین شود. سپس نتایج حاصل از مدل­های ANN با پنج معادله معروف انتقال رسوب مقایسه شدند. شاخص‌های آماری نشان داد که دقت شبکه­های عصبی به­ویژه مدل MLP در تخمین بار رسوب کل با ضریب همبستگی 96/0 بیش از سایر مدل­هاست. همچنین مشخص شد که برای افزایش دقت مدل نیاز به آموزش آن با هر دو نوع داده­های هیدرولوژیک و رسوب است. رابطه  Ackersو White در برآورد مقدار بار رسوب کل بسیار بیش­برآورد و سایر روابط، کم برآورد بودند. نتایج این پژوهش نشان داد که مدل­های ارائه شده بر پایه شبکه­های عصبی با مقادیر رسوب کل مشاهده شده هم­خوانی بیشتری دارند و بویژه شبکه MLP می­تواند مقدار رسوب را در نقاط پیک به خوبی برآورد نماید.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل سازی بار رسوب کل رودخانه ها با استفاده از شبکه های عصبی مصنوعی

برآورد بار رسوب کل رودخانه­ها از مسائل مهم و کاربردی در مدیریت و برنامه­ریزی منابع آب است. غلظت رسوب می­تواند به روش­های مستقیم و یا غیرمستقیم محاسبه شود که معمولاً روش­های مستقیم پرهزینه و زمان­بر هستند. همچنین بار رسوب کل می­تواند به کمک روابط مختلف انتقال رسوب محاسبه شود، لیکن به طور معمول کاربرد این روابط نیاز به شرایط معینی داشته و به علاوه در بیشتر موارد نتایج حاصل از آن­ها با یکدیگر و با ...

متن کامل

مدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی

مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...

متن کامل

شبیه‌سازی بار رسوب معلق با استفاده از روش‌های شبکه عصبی مصنوعی، عصبی-فازی و منحنی سنجه رسوب در حوزه آبخیز هلیل‌رود

در کشورهای در حال توسعه، به‌علت مشکلات مالی و فنی به‌طور معمول داده‌­های رسوب اندکی اندازه‌گیری می­‌شوند، لذا، مدلی که بتواند با استفاده از داده­‌های دبی آب، میزان بار رسوبی را برآورد کند، می­تواند گزینه قابل اطمینانی باشد. با توجه به کاربرد انواع مدل­‌ها در پیش‌­بینی رسوب، این تحقیق با هدف ارائه مدل بهینه­ ­برآورد میزان رسوب معلق بر اساس دبی جریان بر روی ایستگاه­‌های هیدرومتری بالادست رودخانه ...

متن کامل

تخمین دبی بار معلق رسوب با استفاده از بهترین ساختار شبکه عصبی مصنوعی در حوزه آبخیز طالقان

  Prediction of sediment load transported by rivers is a crucial step in the management of rivers, reservoirs and hydraulic projects. In the present study, in order to predict the suspended sediment of Taleghan river by using artificial neural network, and recognize the best ANN with the highest accuracy, 500 daily data series of flow discharge on the present day, flow discharge on the past day...

متن کامل

تخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی

هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 3

صفحات  13- 26

تاریخ انتشار 2013-06-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023