قابلیت شبکههای عصبی مصنوعی جهت مدلسازی چند ایستگاهه بار معلق در مقایسه با روش منحنی سنجه رسوب
نویسندگان
چکیده مقاله:
رسوبات حمل شده توسط رودخانه میتواند باعث بوجود آمدن خساراتی به اراضی کشاورزی و تأسیسات آبی گردد. برآورد صحیح بار رسوب در تأسیسات آبی مانند سدها باعث جلوگیری از صرف هزینههای اضافی خواهد شد. کشور ما ایران با دارا بودن رودخانههای متعدد، پتانسیل بالایی جهت ایجاد سد دارد. یکی از دلایل آن کاهش یافتن ظرفیت انتقال آب توسط مقطع رودخانه به دلیل انباشتگی رسوبات میباشد. لذا بررسی پدیده رسوب و برآورد رسوب حمل شده توسط رودخانه اهمیت خاصی دارد. در این راستا تخمین بار معلق رسوب، توجه مدلسازهای شبکههای عصبی مصنوعی را به خود معطوف کرده است. در این تحقیق از شبکههای عصبی مصنوعی برای برآورد رسوب ایستگاه آخولا واقع بر روی رودخانه آجیچای در استان آذربایجان شرقی استفاده شد. اطلاعات این ایستگاه شامل دبی و رسوب روزانه می باشد. در مراحل مختلف برآورد اثر ترکیبی عوامل مختلف دبی آب و دبی رسوب در کارایی شبکه، مورد بررسی قرار گرفت. به منظور بررسی تاثیر رسوب و دبی ایستگاه های بالادست، علاوه بر دادههای ایستگاه آخولا از دادههای ایستگاههای ونیار و مرکید نیز برای آموزش شبکة عصبی بکار رفت که بهترین نتیجه را در پی داشت. از روش کلاسیک منحنی سنجه نیز برای برآورد رسوب این ایستگاه استفاده گردید. برای بهینهسازی ضرایب رگرسیونی منحنی سنجه از الگوریتم ژنتیک استفاده شد و البته نتایج بهتری نسبت به روش کلاسیک نداد. با توجه به نتایج بدست آمده تخمین با رسوب در چند ایستگاه با استفاده از شبکههای عصبی، کارآیی بهتری داشت.
منابع مشابه
قابلیت شبکه های عصبی مصنوعی جهت مدل سازی چند ایستگاهه بار معلق در مقایسه با روش منحنی سنجه رسوب
رسوبات حمل شده توسط رودخانه می تواند باعث بوجود آمدن خساراتی به اراضی کشاورزی و تأسیسات آبی گردد. برآورد صحیح بار رسوب در تأسیسات آبی مانند سدها باعث جلوگیری از صرف هزینه های اضافی خواهد شد. کشور ما ایران با دارا بودن رودخانه های متعدد، پتانسیل بالایی جهت ایجاد سد دارد. یکی از دلایل آن کاهش یافتن ظرفیت انتقال آب توسط مقطع رودخانه به دلیل انباشتگی رسوبات می باشد. لذا بررسی پدیده رسوب و برآورد رس...
متن کاملمقایسه مدلهای شبکه عصبی مصنوعی و منحنی سنجه رسوب در شبیهسازی میزان رسوب معلق؛ مطالعه موردی حوزه آبخیز شاهرود
این پژوهش با هدف مقایسه کارآیی برخی مدلهای شبیهسازی میزان رسوب معلق شامل منحنی سنجه رسوب و شبکه عصبی مصنوعی و ارائه مدل بهینه بر اساس دبی جریان در حوزه آبخیز شاهرود و بر روی ایستگاههای هیدرومتری گلینک، باغکلایه، لوشان و رجائی دشت انجام شد. به منظور شبیهسازی میزان رسوب معلق از مدل منحنی سنجه رسوب یک خطی و مدلهای شبکه عصبی پرسپترون چند لایه و تابع پایه شعاعی بهره گرفته و سپس ارزیابی این مدل...
متن کاملشبیهسازی بار رسوب معلق با استفاده از روشهای شبکه عصبی مصنوعی، عصبی-فازی و منحنی سنجه رسوب در حوزه آبخیز هلیلرود
در کشورهای در حال توسعه، بهعلت مشکلات مالی و فنی بهطور معمول دادههای رسوب اندکی اندازهگیری میشوند، لذا، مدلی که بتواند با استفاده از دادههای دبی آب، میزان بار رسوبی را برآورد کند، میتواند گزینه قابل اطمینانی باشد. با توجه به کاربرد انواع مدلها در پیشبینی رسوب، این تحقیق با هدف ارائه مدل بهینه برآورد میزان رسوب معلق بر اساس دبی جریان بر روی ایستگاههای هیدرومتری بالادست رودخانه ...
متن کاملمقایسه میزان کارآیی شبکه عصبی مصنوعی و مدل های رگرسیونی، منحنی سنجه رسوب در برآورد رسوب معلق روزانه
تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...
متن کاملمقایسه کارآیی مدل سنجه رسوب و شبکه عصبی مصنوعی در برآورد بار کف رودخانهها
به دلیل مشکلات نمونهبرداری و عدم دقّت کافی معادلات تجربی، سنجش و گزینش مناسبترین روشهای برآورد رسوبات بار کف، اهمّیّت زیادی دارد.هدف پژوهش حاضر، مقایسة کارآیی مدلهای آماری شبکة عصبی مصنوعی و منحنی سنجة رسوب در برآورد رسوبات بار کف است؛ بدین منظور، ابتدا 5 ایستگاه هیدرومتری دارای بیشترین تعداد نمونه انتخاب شدند؛ سپس منحنی سنجة رسوب و مدل شبکة عصبی مصنوعی با 70% دادههای آنها ساخته و ارزیابی دقّت...
متن کاملمقایسه روشهای شبکه های عصبی مصنوعی، فازی-عصبی تطبیقی و منحنی سنجه رسوب در برآورد رسوبات معلق رودخانه ها (مطالعه موردی: رودخانه آجی چای)
ارائه راهکاری مناسب جهت برآورد دقیق بار معلق رودخانهها در پروژههای آبی، مهندسی رودخانه و آبیاریکاربردهای فراوانی دارد. به دلیل تأثیر پارامترهای مختلف بر انتقال رسوبات در رودخانهها، تعیین معادلات حاکم برآن مشکل بوده و مدلهای ریاضی نیز در این راستا از دقت کافی برخوردار نیستند. امروزه استفاده از سیستمهایهوش مصنوعی به عنوان راهکاری جدید در تحلیل مسائل آبی، گسترش یافته است. در تحقیق حاضر منطق فازی-ع...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 19 شماره پاییز و زمستان
صفحات 45- 55
تاریخ انتشار 2010-01-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023