طراحی سیستم معاملات تکنیکی سهام با استفاده از مدل ترکیبی شبکه عصبی MLP و الگوریتمهای تکاملی
نویسندگان
چکیده مقاله:
توسعه سیستمهای معاملاتی سهام با استفاده از الگوریتمهای تکاملی (EA) طی چند سال اخیر به موضوعی پرمخاطب در حوزه مالی مبدل شده است. در پژوهش حاضر، سیستم معاملاتی تکنیکی هوشمند با بهرهگیری از مدلی مرکب از شبکه عصبی MLP و الگوریتمهای تکاملی شامل الگوریتم ژنتیک (GA)، الگوریتم بهینهسازی مورچگان پیوسته (ACOR) و الگوریتم بهینهسازی ازدحام ذرات (PSO) پیشنهادشده است. دادههای مربوط به 15 شرکت منتخب طی سالهای 1387 تا 1396 بر اساس دورههای کوتاهمدت و بلندمدت و همچنین روندهای بازار صعودی، نزولی و خنثی موردبررسی قرار گرفتهاند. جهت انتخاب متغیرهای ورودی نهایی، از مقایسه رتبه بازدهی شاخصهای تکنیکی بر اساس قواعد معاملاتی استفادهشده است. درنهایت، آزمون مقایسه زوجی بازدهی مدلها در مقایسه با استراتژی خرید و نگهداری انجام شد و بازدهی مدلها با یکدیگر مقایسه شده است. نتایج تحقیق نشان میدهد مدلهای ترکیبی MLP و الگوریتم های تکاملی عملکرد بهتر و معناداری نسبت به روش خرید و نگهداری و مدل MLP-BP داشته است و مدل MLP_PSO بازدهی بیش تری نسبت به سایر مدلها کسب کرده است.
منابع مشابه
کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی
پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبر...
متن کاملکاربرد شبکه های عصبی مصنوعی در زمان بندی معاملات سهام: با رویکرد تحلیل تکنیکی
زمانبندی معاملات سهام مسأله ای بسیار مهم و مشکل به دلیل پیچیدگی بازار سهام است. آنچه اهمیت دارد پیش بینی روند قیمت سهام است که هدف اصلی در مباحث تحلیل تکنیکی است. گرچه این امر به دلیل دخالت عوامل متعدد بازار و روابط بین آنها چندان آسان نیست. به نظر می رسد استفاده از ابزارها و الگوریتمهای محاسباتی پیچیده تر مانند شبکه های عصبی مصنوعی در مدلسازی فرآیندهای غیر خطی که منتج به قیمت و روند سهام می شو...
متن کاملپیشبینی روند تغییرات قیمت سهام با بهکارگیری شاخصهای تحلیل تکنیکی و استفاده از روش ترکیبی الگوریتم ژنتیک و شبکه عصبی مصنوعی: مطالعه موردی سهام ایران خودرو
همواره پیشبینی دقیق روند بازار سهام برای تصمیمگیریهای مالی سرمایهگذاران مهم بوده است. استفاده از مجموعهای از شاخصهای تحلیل تکنیکی یکی از پرکاربردترین روشهای پیشبینیهای مالی است. تعیین پارامترهای مناسب این شاخصها و همچنین ترکیب آنها یکی از چالشهای پژوهشگران است. از طرف دیگر، ماهیت غیرخطی و پویای تغییرات در روند بازار سهام موجب استفاده گسترده از روشهای پیشبینی غیرخطی همچون شبکه عصبی...
متن کاملکاربرد شبکه های عصبی مصنوعی در زمان بندی معاملات سهام: با رویکرد تحلیل تکنیکی
زمانبندی معاملات سهام مسأله¬ای بسیار مهم و مشکل به دلیل پیچیدگی بازار سهام است. آنچه اهمیت دارد پیش¬بینی روند قیمت سهام است که هدف اصلی در مباحث تحلیل تکنیکی است. گرچه این امر به دلیل دخالت عوامل متعدد بازار و روابط بین آنها چندان آسان نیست. به نظر می¬رسد استفاده از ابزارها و الگوریتمهای محاسباتی پیچیده¬تر مانند شبکه¬های عصبی مصنوعی در مدلسازی فرآیندهای غیر خطی که منتج به قیمت و روند سهام می¬شو...
متن کاملبهینه سازی شبکه عصبی مصنوعی با استفاده از الگوریتمهای تکاملی
شبکه ی عصبی مصنوعی شبیه سازی ساده ای از مکانیزم سیستم عصبی بیولوژیکی است که به دلیل قدرت یادگیری مسایل مختلف، تنها بر پایه ی آموزش از طریق ارایه ی الگوهای نمونه ی ورودی-خروجی، بسیار مورد توجه قرار گرفته است. یافتن وزن های مناسب شبکه ی عصبی مصنوعی مهم ترین عامل در یادگیری آن محسوب می شود. الگوریتم پس انتشار خطا به عنوان الگوریتم استاندارد شبکه ی عصبی مصنوعی بسیار کارآمد است، اما به دلیل ماهیت مب...
15 صفحه اولشناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF
هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران میباشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و دادههای واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا دادههای مربوط به 316 شرکت از نخستین رو...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 13 شماره 45
صفحات 47- 64
تاریخ انتشار 2020-03-20
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023