طبقهبندی پتانسیلهای عمل نرونی با استفاده از شبکههای عصبی شعاعی
نویسندگان
چکیده مقاله:
Background: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR) of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system. Methods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF) neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used. Results: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS) reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity. Conclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.
منابع مشابه
آشکارسازی پتانسیلهای عمل در ثبت های خارج سلولی با استفاده از انرژی شانون و تبدیل هیلبرت
آشکارسازی اسپایکهای عصبی اولین گام برای تجزیه و تحلیل پتانسیل عمل واحدهای نورونی در ثبت خارج سلولی است. وجود نویز پس زمینه درثبت های خارج سلولی که عمدتا از جمع آثار پتانسیل عمل واحد های نورونی دورتر از منطقه ثبت ناشی می شود در بسیاری از اوقات آشکارسازی و تشخیص اسپایک های عصبی کم دامنه را دشوار می سازد. تاکنون محققین زیادی به این امر پرداخته اند و برای حل این مشکل الگوریتمهای زیادی پیشنهاد شده...
متن کاملتخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...
متن کاملتقریب تابع ارزش عمل با استفاده از شبکه توابع پایه شعاعی برای یادگیری تقویتی
مشکل تنگنای ابعاد، یکی از چالش هایی است که کاربرد الگوریتم های یادگیری تقویتی گسسته را در مورد مسائل کنترلی واقعی که دارای فضای حالت و عمل بزرگ و یا پیوسته می باشند محدود نموده است. ترکیب روش های آموزشی گسسته با تقریب زننده های تابعی برای حل این مشکل چندی است مورد توجه محققان قرارگرفته است. در همین راستا در این مقاله یک الگوریتم جدید یادگیری تقویتی عصبی (NRL) بر مبنای معماری نقاد- تنها معرف...
متن کاملپیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی
امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 68 شماره None
صفحات 638- 643
تاریخ انتشار 2011-02
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023