شناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF
نویسندگان
چکیده مقاله:
هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران میباشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و دادههای واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا دادههای مربوط به 316 شرکت از نخستین روز کاری سال 1389 تا آخرین روز کاری سال 1392 بصورت روزانه شامل 966 روز وارد مدل الگوریتم ژنتیک شده و در نهایت اوزان مربوط به هر متغیر از این الگوریتم منتج شد. با استفاده از این اوزان، شبکه عصبی مصنوعی پرسپترون طراحی، آموزش و اجرا شد. سپس مدل SQDF طراحی و اجرا و کارایی آن اثبات شد. سرانجام نتایج حاصل از مدل ANN-GA با نتایج مدل SQDF با استفاده از آمارههای اندازهگیری خطای MAPE، RMSE و R2 مقایسه شدند. نتایج نشان داد که مدل ANN-GA در شناسایی دستکاری قیمت سهام و طبقه بندی شرکتها به دو گروه دستکاری شده و دستکاری نشده عملکرد بسیار بهتری از مدل SQDF داشته و خطای بسیار کمتری دارد. [1]. Artificial Neural Networks-Genetic Algorithm [2]. Simplified Quadratic Discriminant Function
منابع مشابه
سنجش دستکاری قیمت ها با استفاده از مدل های تحلیل ممیزی درجه دوم و الگوریتم ژنتیک بر مبنای شبکه عصبی مصنوعی
در این مقاله از مدل تحلیل ممیزی درجه دوم ) QDF ) 1 و مدل هیبریدی الگوریتم ژنتیک بر مبنای شبکهعصبی مصنوعی ) ANN-GA ) 2 برای تخمین دستکاری قیمت سهام در بورس اوراق بهادار تهران استفاده شدهاست. در این تحقیق، ابتدا با استفاده از روش غربالگری، نمونه ای به حجم 543 شرکت پذیرفته شده در بورساوراق بهادار تهران انتخاب و اطلاعات مربوط به شاخص های قیمت و بازده نقدی ) TEDPIX (، قیمت پایانی،نوسان قیمت پایانی و...
متن کاملبررسی مقایسه ای بین مدل ترکیبی الگوریتم ژنتیک- شبکه عصبی مصنوعی (ann-ga) و مدل تابع تفکیکی درجه دوی تعدیل شده (sqdf) برای شناسایی دستکاری قیمت سهام . در شرکت های پذیرفته شده در بورس اوراق بهادار تهران
پژوهش حاضر به بررسی و شناسایی دستکاری قیمت سهام در شرکت های پذیرفته شده در بورس اوراق بهادار تهران پرداخته است. این پژوهش مدل ترکیبی از الگوریتم ژنتیک ( ga) و شبکه عصبی مصنوعی ( ann) را برای شناسایی دستکاری قیمت سهام ارائه داده و نتایج آن را با نتایج مدل تابع تفکیکی درجه دوی تعدیل شده ) (sqdf مقایسه کرده است. در مدل ترکیبی الگوریتم ژنتیک_شبکه عصبی مصنوعی ( ann-ga) ابتدا داده های مربوط به 316 شر...
پیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی
هدف از این مقاله ارزیابی الگوی ترکیبی شبکههای عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران میباشد. برای این منظور، از دادههای سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدلهای پیشبینی و از دادههای سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدلهای پیشبینی استفاده شد. در پایان به منظور مقایسه نتایج پیشبینی مدل ترکیبی...
متن کاملپیشبینی روند تغییرات قیمت سهام با بهکارگیری شاخصهای تحلیل تکنیکی و استفاده از روش ترکیبی الگوریتم ژنتیک و شبکه عصبی مصنوعی: مطالعه موردی سهام ایران خودرو
همواره پیشبینی دقیق روند بازار سهام برای تصمیمگیریهای مالی سرمایهگذاران مهم بوده است. استفاده از مجموعهای از شاخصهای تحلیل تکنیکی یکی از پرکاربردترین روشهای پیشبینیهای مالی است. تعیین پارامترهای مناسب این شاخصها و همچنین ترکیب آنها یکی از چالشهای پژوهشگران است. از طرف دیگر، ماهیت غیرخطی و پویای تغییرات در روند بازار سهام موجب استفاده گسترده از روشهای پیشبینی غیرخطی همچون شبکه عصبی...
متن کاملپیشبینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی- موجکی
خشکسالی بهعنوان یکی از مهمترین بلایای طبیعی است که ممکن است در هر رژیم آب و هوایی اتفاق بیفتد. از آنجا که وقوع خشکسالی اجتناب ناپذیر است، بنابراین شناخت آن بهمنظور مدیریت بهینه منابع آب، از اهمیت بسزایی برخوردار است. از مؤثرترین عوامل در تدوین طرحهای مقابله با خشکسالی و مدیریت آن، طراحی سیستمهای پیشبینی خشکسالی است که بتوان اثرات مخرب ناشی از آن را به حداقل رساند. به این منظور در این تحقیق...
متن کاملمدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 3
صفحات 149- 171
تاریخ انتشار 2016-11-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023