شببیه سازی تاثیر سرعت انجماد بر ریز ساختار آلیاژهای ریختگی آلومینیوم با استفاده از مدل شبکه عصبی مصنوعی
نویسندگان
چکیده مقاله:
In cast aluminum and its alloys, the microstructure varies under different solidification conditions, causing variations in their mechanical properties. These materials are basically produced in sand and metallic molds or through die casting, each of which is associated with a unique solidification regime with significantly different cooling rates so that the resulting microstructure strongly depends on the casting method used. In the present study, the effects of such important solidification parameters as cooling rate, solidification front velocity, and thermal gradient at the solid-liquid interface on secondary dendrite arm spacing were investigated. By a directional solidification system, the mathematical relation between cooling rate and dendrite spacing was extracted for several commercially important aluminum alloys. A neural network model was trained using the experimental values of cooling rates and secondary dendrite arm spacing. Reliable prediction of these values was made from the trained network and their corresponding diagrams were constructed. A good agreement was found between simulation and experimental values. It is concluded that the neural network constructed in this study can be employed to predict the relationship between cooling rate and dendrite arm spacing, which is difficult, if not iompossible, to accomplish experimentally.
منابع مشابه
مدل سازی تجربی و بررسی تأثیر پارامترهای فرایند جوشکاری اصطکاکی اختلاطی آلیاژ آلومینیوم 5456 با استفاده از شبکه عصبی مصنوعی
متن کامل
مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملمدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
متن کاملمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
متن کاملمدل سازی کیفیت زیباشناختی منظر در فضای سبز شهری با استفاده از شبکه عصبی مصنوعی
ارزیابیهای کیفیت منظر عمدتا اشاره به نقش کلیدی عناصر طبیعی و مصنوعی منظر در ایجاد رضایتمندی و درک زیبایی از منظر دارند. هدف از این مقاله مدلسازی ارزیابی کیفیت زیباشناختی منظر با استفاده از شبکه عصبی مصنوعی به منظور کشف روابط حاکم در ساختار منظر و ارتباط عناصر منظر با کیفیت زیباشناختی آن است. جهت انجام پژوهش حاضر چهار بوستان (جمشیدیه، نهج البلاغه، قیطریه، آب و آتش) با تنوع بالا در کیفیت منظر ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 28 شماره 1
صفحات 75- 83
تاریخ انتشار 2009-06
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023