در مورد حدس روتا
نویسندگان
چکیده مقاله:
مترویدها در تلاش برای فراهم آوردن یک رفتار مجرد یکسان از وابستگی در جبر خطی و نظریه گراف معرفی شدهاند. نام متروید ساختاری مربوط به یک ماتریس را القا میکند. تعریف ویتنی تنوعی شگفتانگیز از ساختارهای ترکیبیاتی را در برداشت. از این گذشته مترویدها به طور طبیعی در بهینهسازی ترکیبیاتی پدیدار میشوند، زیرا آنها دقیقاً همان ساختارهای ترکیبیاتی هستند که الگوریتم حریصانه برای آن به نتیجه میرسد. یکی از حدسهای مهم در نظریه متروید، حدس روتا میباشد که توسط جیان کارلو روتا، ریاضیدان و فیلسوف مشهور در سال ۱۹۷۰ مطرح شد. ما در این مقاله ضمن بیان مقدمات لازم و معرفی حدس روتا، به بررسی کلیات اثباتی که توسط جیوف ویتل از دانشگاه ویکتوریا با همکاری جیم گیلن از کانادا و برت جراردز از هلند برای آن اخیراً ارائه کردهاند، میپردازیم.
منابع مشابه
حل حدسیۀ روتا
در سال ١٩٧٠ جان کارلو روتا حدسیهای مطرح کرد که یک مشخصسازی ترکیبیاتی زیبایی را برای وابستگی خطی در فضاهای برداری روی هر میدان متناهی داده شده، پیش بینی میکرد. اخیراً یک برنامۀ پژوهشی پانزده ساله را که منجر به حل حدسیۀ روتا شده است، به پایان بردهایم. در این مقاله، این حدسیه را شرح و یک توصیف کلی از اثبات آن ارائه میدهیم.
متن کاملحدس آنتروپی مینیمال
مطالعه خمینه ها در هندسه امری طبیعی است و در این زمینه، تشخیص خمینه ها از یکدیگر مساله ای مهم است. در این راستا، ناورداهای مختلف به کار می آیند و کار تشخیص را ساده می سازند. البته به طور کلی این که بتوان فضاهای مشخصی را توسط یک یا دو ناوردا از یکدیگر تمیز داد، امری بسیار خوشبینانه به نظر می رسد، ولی اخیرا این تشخیص صورت گرفته است و نشان داده شده است که برخی مفاهیم در عین پیچیده بودن ظاهرشان، در...
متن کاملنتایجی در مورد حدس c1-چگالش پالیس
فرض کنیم m یک منیفلد فشرده d-بعدی و بدون کران باشد و diff^r(m) که r بزرگتر و مساوی صفر است، مجموعه تمام دیفیومورفیسم ها روی m همراه با c^r-توپولوژی باشد. یکی از مسایل اصلی در دینامیک های مشتق پذیر، حدس مشهور پالیس است که به صورت زیر بیان می شود. حدس c^r-چگالش پالیس:" c^r-دیفیومورفیسم های روی m با یک مماس هموکلینیک یا یک دور چند بعدی، در متمم c^r-بستار سیستم های هذلولوی c^r-چگال هستند." در بع...
15 صفحه اولحدس سینگر-ورمر
کار روی برد اشتقاقهای روی جبرهای باناخ توسط سینگر و ورمر در سال 1955 آغاز شد. آنها نشان دادند که برد هر اشتقاق کراندار روی جبرهای باناخ تعویضپذیر، داخل رادیکال جیکوبسن قرار می گیرد. آنها حدس زدند که شرط پیوستگی اضافی است و این به حدس سینگر-ورمر مشهور شد. بیش از سی سال گذشت تا توماس در سال 1988 این حدس را ثابت کرد. در تلاش برای حل این مسئله و چند مسئله دیگر، شاخه جدیدی در آنالیز تابعی به نام نظر...
متن کاملحدس های زیبا در نظریه گراف
به طور قطع، هر آنچه که در ریاضیات مطرح میشود الزاماً زیبا نیست. اما با باور به اینکه زیبایی در بطن بهترین قسمتهای ریاضی قرار دارد، تلاش میکنیم تا برخی از بهترین حدسهای مربوط به نظریهی گراف را گردآوری کنیم که با ملاکهای مختلف زیبایی جور در بیایند.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 77- 91
تاریخ انتشار 2017-05-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023