حل عددی معادلات بوسینسک تراکم‌ناپذیر با استفاده از روش فشرده ترکیبی مرتبه ششم

نویسندگان

  • اسماعیل قیصری مؤسسه ژئوفیزیک دانشگاه تهران
  • عباسعلی علی‌اکبری بیدختی مؤسسه ژئوفیزیک دانشگاه تهران
چکیده مقاله:

حل دقیق معادلات حاکم بر جریان گرانی می‌تواند در تحلیل دینامیک پدیده‌های جوّی و اقیانوسی مرتبط مفید باشد. در این کار معادلات حاکم بر جریان گرانی با تقریب بوسینسک در قالب شارش گرانی Lock exchange با استفاده از روش فشرده ترکیبی مرتبه ششم حل عددی می‌شوند. به‌منظور مقایسه دقت روش فشرده ترکیبی مرتبه ششم با روش‌های مرتبه دوم مرکزی و فشرده مرتبه چهارم، از حل عددی مسئله گردش اقیانوسی استومل استفاده شده است. با استفاده از مسئله موردی جریان گرانی Lock exchange به‌شکل‌های جریان گرانی تخت و استوانه‌ای، توانایی تفکیک روش فشرده ترکیبی مرتبه ششم در معادلات غیرخطی که به واقعیت نزدیک‌ترند سنجیده می‌شود. برای شبیه‌سازی عددی شرایط مرزی روابط متناسب با روش فشرده ترکیبی مرتبه ششم با در نظر گرفتن شرایط مرزی بدون لغزش اعمال می‌شود. مقایسه کیفی نتایج حل عددی با کار دیگران حاکی از عملکرد بهتر روش فشرده ترکیبی مرتبه ششم است. به‌علاوه مقایسه کیفی و کمّی نتایج حل عددی با استفاده از روش فشرده ترکیبی مرتبه ششم در مقایسه با روش‌های فشرده مرتبه چهارم و مرتبه دوم مرکزی نیز بیانگر عملکرد مناسب‌تر روش فشرده ترکیبی مرتبه ششم می‌باشد.    

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حل عددی معادلات آب کم‌عمق با استفاده از روش فشرده ترکیبی مرتبه ششم

در این تحقیق، حل عددی معادلات آب کم‌عمق غیرخطی در صفحه f برحسب میدان‌های ارتفاع، واگرایی و تاوایی با استفاده از روش فشرده ترکیبی مرتبه ششم مورد بررسی قرار می‌گیرد و نتایج آن با روش‌های مرتبه دوم مرکزی، فشرده مرتبه چهارم، اَبَرفشرده مرتبه ششم و طیفی‌وار مقایسه می‌شود. برای این منظور، یک جت مداری به‌منزلة شرایط اولیه درنظر گرفته می‌شود که با گذشت زمان به ساختارهایی پیچیده با مقیاس کوچک‌تر ...

متن کامل

حل عددی معادلات آب کم‌عمق یک‌بُعدی با روش فشرده ترکیبی مرتبه ششم

مطالعه فیزیکی معادلات آب کم‌عمق یکی از مسائل مطرح در دینامیک شاره‌های ژئوفیزیکی است. در این کار به بررسی عملکرد روش فشرده ترکیبی مرتبه ششم برای حل عددی معادلات آب کم‌عمق یک‌بُعدی پرداخته می‌شود. برای مقایسه حل عددی با سایر روش‌های تفاضل‌متناهی، معادلات آب کم‌عمق یک‌بعدی به سه روش حل شده و نتایج حاصل برای یک آزمون موردی مقایسه می‌شود. در این حل عددی، برای انتگرال‌گیری بخش زمانی معادلات از روش...

متن کامل

حل عددی معادلات بوسینسک تراکم‌ناپذیر با استفاده از روش فشرده مرتبه چهارم: بررسی موردی شارش گرانی تبادلی

در تحقیق حاضر حل عددی معادلات حاکم بر جریان گرانی در قالب شارش تبادلی (lock-exchange) با استفاده از روش فشرده مرتبه چهارم عرضه می‌شود. برای سنجش توانایی روش فشرده مرتبه چهارم در مسائل غیر‌خطی که به حالت واقعی نزدیک‌تر هستند از مسئله موردی جریان گرانی در قالب شارش گرانی تبادلی به‌صورت جریان گرانی مسطح و استوانه‌ای استفاده می‌کنیم. در این کار علاوه بر عرضه نحوه اِعمال روش فشرده مرتبه چهارم به معاد...

متن کامل

حل عددی معادلات آب کم عمق یک بُعدی با روش فشرده ترکیبی مرتبه ششم

مطالعه فیزیکی معادلات آب کم عمق یکی از مسائل مطرح در دینامیک شاره های ژئوفیزیکی است. در این کار به بررسی عملکرد روش فشرده ترکیبی مرتبه ششم برای حل عددی معادلات آب کم عمق یک بُعدی پرداخته می شود. برای مقایسه حل عددی با سایر روش های تفاضل متناهی، معادلات آب کم عمق یک بعدی به سه روش حل شده و نتایج حاصل برای یک آزمون موردی مقایسه می شود. در این حل عددی، برای انتگرال گیری بخش زمانی معادلات از روش رون...

متن کامل

حل عددی معادلات بوسینسک تراکم ناپذیر با استفاده از روش فشرده مرتبه چهارم: بررسی موردی شارش گرانی تبادلی

در تحقیق حاضر حل عددی معادلات حاکم بر جریان گرانی در قالب شارش تبادلی (lock-exchange) با استفاده از روش فشرده مرتبه چهارم عرضه می شود. برای سنجش توانایی روش فشرده مرتبه چهارم در مسائل غیر خطی که به حالت واقعی نزدیک تر هستند از مسئله موردی جریان گرانی در قالب شارش گرانی تبادلی به صورت جریان گرانی مسطح و استوانه ای استفاده می کنیم. در این کار علاوه بر عرضه نحوه اِعمال روش فشرده مرتبه چهارم به معاد...

متن کامل

حل عددی معادلات آب کم‌عمق دو لایه بر حسب متغیرهای فشارورد و کژفشار با استفاده از روش فشرده مرتبه چهارم

در پژوهش حاضر، روش فشرده مرتبه چهارم برای حل عددی معادلات آب کم‌عمق دولایه در صفحه f برحسب متغیرهای تاوایی، واگرایی و ارتفاع به‌کار گرفته می‌شود. با درنظر گرفتن متغیرهای فشارورد و کژفشار، این معادلات به دو بخش فشاورد و کژفشار تقسیم می‌شوند، به‌گونه‌ای که هر بخش به‌طور مجزا حل می‌شود. برای گسسته‌سازی مکانی معادلات، علاوه بر روش فشرده مرتبه چهارم از روش مرتبه دوم مرکزی نیز استفاده شده است تا نتای...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 3

صفحات  53- 65

تاریخ انتشار 2016-09-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023