حل عددی معادلات آب کمعمق دو لایه بر حسب متغیرهای فشارورد و کژفشار با استفاده از روش فشرده مرتبه چهارم
نویسندگان
چکیده مقاله:
در پژوهش حاضر، روش فشرده مرتبه چهارم برای حل عددی معادلات آب کمعمق دولایه در صفحه f برحسب متغیرهای تاوایی، واگرایی و ارتفاع بهکار گرفته میشود. با درنظر گرفتن متغیرهای فشارورد و کژفشار، این معادلات به دو بخش فشاورد و کژفشار تقسیم میشوند، بهگونهای که هر بخش بهطور مجزا حل میشود. برای گسستهسازی مکانی معادلات، علاوه بر روش فشرده مرتبه چهارم از روش مرتبه دوم مرکزی نیز استفاده شده است تا نتایج این دو روش با یکدیگر مقایسه شوند. برای فرمولبندی و گسستهسازی زمانی این معادلات، روش نیمهضمنی سهترازه بهکار گرفته شده است. شرط اولیه کژفشار بهگونهای انتخاب شده است که میدان جریان در لایه بالایی درست درخلاف جهت جریان لایه پایینی است و متغیرهای فشارورد در لحظه اولیه، صفر هستند. نتایج نشاندهنده قابلیت مدل در برقراری پایستگی انرژی و جرم است. مقایسه نتایج، عملکرد بهتر روش فشرده مرتبه چهارم را در مقایسه با روش مرتبه دوم مرکزی نشان میدهد.
منابع مشابه
حل عددی معادلات آب کمعمق با روش مککورمک فشرده مرتبه چهارم
کار حاضر، به اعمال روش مککورمک فشرده مرتبه چهارم برای حل عددی شکل پایستار معادلات آب کمعمق، میپردازد. گسستهسازی مکانی روش مککورمک فشرده مرتبه چهارم با دو طرحواره به نامهای 2/4 و 4/4 و پیمایش زمانی این روش نیز، با روش-های اصلی و رونگ-کوتا معرفی میشوند. یک معادله ساده خطی، یعنی، معادله فرارفت یکبعدی که دارای حل تحلیلی میباشد، با استفاده از روشهای مککورمک مرتبه دوم و مککورمک فشرده مرتب...
متن کاملحل عددی معادلات آب کمعمق با استفاده از روش فشرده ترکیبی مرتبه ششم
در این تحقیق، حل عددی معادلات آب کمعمق غیرخطی در صفحه f برحسب میدانهای ارتفاع، واگرایی و تاوایی با استفاده از روش فشرده ترکیبی مرتبه ششم مورد بررسی قرار میگیرد و نتایج آن با روشهای مرتبه دوم مرکزی، فشرده مرتبه چهارم، اَبَرفشرده مرتبه ششم و طیفیوار مقایسه میشود. برای این منظور، یک جت مداری بهمنزلة شرایط اولیه درنظر گرفته میشود که با گذشت زمان به ساختارهایی پیچیده با مقیاس کوچکتر ...
متن کاملحل عددی معادلات آب کم عمق با روش مک کورمک فشرده مرتبه چهارم
کار حاضر، به اعمال روش مک کورمک فشرده مرتبه چهارم برای حل عددی شکل پایستار معادلات آب کم عمق، می پردازد. گسسته سازی مکانی روش مک کورمک فشرده مرتبه چهارم با دو طرحواره به نام های 2/4 و 4/4 و پیمایش زمانی این روش نیز، با روش-های اصلی و رونگ-کوتا معرفی می شوند. یک معادله ساده خطی، یعنی، معادله فرارفت یک بعدی که دارای حل تحلیلی می باشد، با استفاده از روش های مک کورمک مرتبه دوم و مک کورمک فشرده مرتب...
متن کاملحل عددی معادلات بوسینسک تراکمناپذیر با استفاده از روش فشرده مرتبه چهارم: بررسی موردی شارش گرانی تبادلی
در تحقیق حاضر حل عددی معادلات حاکم بر جریان گرانی در قالب شارش تبادلی (lock-exchange) با استفاده از روش فشرده مرتبه چهارم عرضه میشود. برای سنجش توانایی روش فشرده مرتبه چهارم در مسائل غیرخطی که به حالت واقعی نزدیکتر هستند از مسئله موردی جریان گرانی در قالب شارش گرانی تبادلی بهصورت جریان گرانی مسطح و استوانهای استفاده میکنیم. در این کار علاوه بر عرضه نحوه اِعمال روش فشرده مرتبه چهارم به معاد...
متن کاملحل عددی مسئله تنظیم راسبی غیرخطی ناپایای دوبُعدی با استفاده از روش فشرده مککورمک مرتبه چهارم
در این مقاله حل عددی مسئله تنظیم راسبی غیرخطی ناپایا که یکی از فرایندهای مهم دینامیکی در جوّ و اقیانوس است، در دو حالت یکبُعدی و دوبُعدی با استفاده از روش فشرده مککورمک مرتبه چهارم ارائه میشود. ابتدا به نحوه و چگونگی بهدست آوردن روابط این روش اشاره میشود. سپس برای بررسی عملکرد این روش در مقایسه با روشهای مرتبه دوم مرکزی، مککورمک مرتبه دوم و فشرده مرتبه چهارم از دو معادله مدل که دارای حلها...
متن کاملحل عددی معادلات بوسینسک تراکمناپذیر با استفاده از روش فشرده ترکیبی مرتبه ششم
حل دقیق معادلات حاکم بر جریان گرانی میتواند در تحلیل دینامیک پدیدههای جوّی و اقیانوسی مرتبط مفید باشد. در این کار معادلات حاکم بر جریان گرانی با تقریب بوسینسک در قالب شارش گرانی Lock exchange با استفاده از روش فشرده ترکیبی مرتبه ششم حل عددی میشوند. بهمنظور مقایسه دقت روش فشرده ترکیبی مرتبه ششم با روشهای مرتبه دوم مرکزی و فشرده مرتبه چهارم، از حل عددی مسئله گردش اقیانوسی استومل استفاده شده ا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 11 شماره 2
صفحات 1- 14
تاریخ انتشار 2017-07-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023