توسعه شبکه عصبی مصنوعی مبتنی بر الگوریتم ژنتیک به منظور پیش‌بینی آزمایش‌های PVT چاه‌های نفت در صنایع بالادستی

نویسندگان

  • حسین اکبری پور بخش مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران، ایران
  • محسن اسلام‌نژاد روه مهندسی فناوری و اطلاعات، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران، ایران
چکیده مقاله:

در مرحله صیانت از مخازن نفتی صنایع بالادستی، آزمایش‌های پیچیده‌ای موسوم به PVT برای شناسایی خواص سیالات مخزن انجام می‌گیرد. وجود مشکلاتی چون خطرات احتمالی، زمان‌بر بودن، دقیق نبودن نمونه‌ها و محدودیت‌های دما و فشار، باعث شده تا استفاده از روش‌های هوشمند در این حوزه گسترش یابد. در این پژوهش به منظور اجتناب از مشکلات مذکور و یافتن رابطه پیچیده و غیرخطی داده‌های آزمایش‌های‌ PVT از شبکه عصبی مصنوعی بهره گرفته شده است. همچنین، از الگوریتم ژنتیک به منظور تعیین مقادیر بهینه پارامترهای مدل شبکه‌ عصبی در فرآیند آموزش استفاده شده است. به منظور ارزیابی رویکرد توسعه یافته از مجموعه داده‌های چاه‌های نفتی جنوب ایران بهره گرفته شد و نتایج حاصل نشان می‌دهد که استفاده از شبکه عصبی مصنوعی مبتنی بر الگوریتم ژنتیک، برخلاف روش‌های کلاسیک، در زمان کمتر و با دقت بالایی خواص سیالات مخزن (ضریب حجمی سیال و فشار نقطه حباب) را پیش‌بینی می‌نماید. در نتیجه، کارشناسان و مدیران صنایع بالادستی مخازن نفتی ایران می‌توانند از شبکه عصبی پیشنهادی در راستای پیش‌ینی آزمایش‌های PVT بهره گیرند.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

توسعه شبکه عصبی مصنوعی مبتنی بر الگوریتم ژنتیک به منظور پیش بینی آزمایش های pvt چاه های نفت در صنایع بالادستی

در مرحله صیانت از مخازن نفتی صنایع بالادستی، آزمایش های پیچیده ای موسوم به pvt برای شناسایی خواص سیالات مخزن انجام می گیرد. وجود مشکلاتی چون خطرات احتمالی، زمان بر بودن، دقیق نبودن نمونه ها و محدودیت های دما و فشار، باعث شده تا استفاده از روش های هوشمند در این حوزه گسترش یابد. در این پژوهش به منظور اجتناب از مشکلات مذکور و یافتن رابطه پیچیده و غیرخطی داده های آزمایش های pvt از شبکه عصبی مصنوعی ...

متن کامل

پیش‌بینی مدیریت سود مبتنی بر مدل جونز تعدیل شده با استفاده از مدل شبکه عصبی مصنوعی و الگوریتم ژنتیک

در سالهای اخیر مدیریت سود در پژوهش های دانشگاهی توجه زیادی را به خود جلب کرده است. هدف این پژوهش پیش بینی مدیریت سود از طریق اقلام تعهدی اختیاری مبتنی بر مدل جونز تعدیل شده است. در این پژوهش از دو مدل شبکه عصبی مصنوعی و مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی به عنوان الگوی موفقجهت پیش بینی مدیریت سود مبتنی بر جونز تعدیل شده در بورس اوراق بهادار تهران استفاده شده است. نمونه مورد استفاده در این پژ...

متن کامل

مدل‌سازی و بهینه‌سازی نانوبیوسنسور الیگونوکلئوتیدی با استفاده از رویکرد مبتنی بر شبکه عصبی مصنوعی و الگوریتم ژنتیک

توسعه هر نوع بیوسنسور با چالش‌هایی در زمینه بهینه‌سازی پارامترها و کالیبراسیون مواجه است. در این تحقیق رویکردی مبتنی بر یادگیری ماشین برای مدل‌سازی و بهینه‌سازی مولفه­های تاثیرگذار در ساخت نانوبیوسنسور الکتروشیمیایی بر اساس الکترود کربن شیشه‌ای اصلاح شده با گرافن اکسید و نانومیله طلا در شرایط کاری آزمایشگاهی ارائه شده است. پاسخ نانوبیوسنسور به عنوان خروجی و تاثیر هشت عامل موثر شامل: غلظت گرافن ...

متن کامل

کاربرد شبکه عصبی مبتنی بر الگوریتم ژنتیک در پیش بینی تقاضای بلندمدت انرژی

پیش­بینی تقاضای انرژی جهت عرضه به موقع، تنظیم بازار، هدفگذاری میزان صادرات و ایجاد امنیت انرژی اهمیت ویژه­ای دارد. روش­های مختلفی برای پیش­بینی تقاضای انرژی معرفی شده است که در این بین با توجه به روند غیرخطی و پرنوسان تقاضای انرژی، تکنیک­های غیرخطی نتایج مطلوب­تری داشته است. شبکه­های عصبی و الگوریتم ژنتیک از مهمترین و پرکاربردترین تکنیک­های غیرخطی در این زمینه می­باشند که هر یک نقاط ضعف و قوت خ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 25  شماره 84

صفحات  135- 149

تاریخ انتشار 2015-11-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023