تعیین گونه سفر مبتنی بر پویشگر شبکه وای-فای با استفاده از شبکه فازی-عصبی تطبیقی
نویسنده
چکیده مقاله:
آگاهی از گونه سفر و الگوی حرکت شهروندان همواره مورد توجه مدیران شهری در حوزه مدیریت حمل و نقل و ترافیکبوده است. بهنگام نبودن و هزینه اجرایی روش های سنتی جمع آوری اطلاعات مانند استفاده از پرسشنامه و ظهور فنآوری های جدید موجب شده است تا از ابزارهای ارتباطی همچون تلفن همراه جهت جمعآوری و تحلیل دادههای ترافیکی استفاده شود. در این میان قابلیت های شبکه های وای-فای تلفن همراه همچون عمومیت، قابلیت دسترسی بالا و هزینه پایین، مورد توجه سامانههای حمل و نقل هوشمند بوده است.در این پژوهش با استفاده از تعریف سه ویژگی بر روی سیگنال های جمع آوری شده از وای-فای کاربران و بهرهگیری از مدل شبکه فازی-عصبی تطبیقی، کاربران ناحیه تحت پوشش در سه دسته طبقه بندی میگردند. این سه دسته عبارتند از: عابرین پیاده، خودروهای عبوری و کاربرانی که در ناحیه مذکور توقف طولانی مدت داشته اند.. نتایج نشان میدهد، مدل پیشنهادی به ازای بکارگیری روش خوشه بندی کاهشی برای تعیین تابع عضویت اولیه ویژگیها توانسته است با دقت 83 درصد کاربران مذکور را طبقه بندی نماید .همچنین میزان صحت و بازخوانی تشخیص خودروهای عبوری در این ناحیه به ترتیب 75 و 90 درصد است.
منابع مشابه
پیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی
In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...
متن کاملمدلسازی تولید سفر با استفاده از روش شبکه های عصبی-فازی
دستیابی به یک نتیجه دقیق و مناسب در فرایند چهارمرحله ای آنالیز سفر به روش UTMS وابسته به برآورد دقیق و قابل قبول تعداد سفرهای تولید شده در نواحی مختلف شهر است. در بررسی مرحله ایجاد سفر با توجه به وابستگی شدید میزان سفر تولید شده در یک ناحیه به اطلاعات سهل الوصولی نظیر جمعیت ، برآورد تولید سفر معمولاً با دقت خوبی انجام میگیرد. از اینروست که در صورتیکه مقادیر برآورد شده دیگر نظیر مقادیر جذب سفر با...
متن کاملمدلسازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان
Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...
متن کاملتعیین قواعد بهرهبرداری از مخزن سد درودزن با استفاده از شبکه عصبی تطبیقپذیر مبتنی بر سیستم استنتاج فازی (ANFIS)
Nowadays, water resource management has been shifted from the construction of new water supply systems to the management and the optimal utilization of the existing ones. In this study, the reservoir operating rules of Doroodzan dam reservoir, located in Fars province, were determined using different methods and the most efficient model was selected. For this purpose, a monthly nonlinear multi-...
متن کاملتولید شتابنگاشت مصنوعی زلزله با استفاده از شبکه عصبی فازی
نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدموجود شتابنگاشتهای مناسب در مناطق مختلف، تولید شتابنگاشتهای مصنوعی سازگار با طیف طرح را ضروری میسازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پک...
متن کاملاستفاده از شبکه عصبی در تخمین غلظت رنگزا در محلولهای دوجزیی با پویشگر
روش متداول به منظور تعیین غلظت اجزای محلول مواد رنگزا جذبسنجی میباشد. اما این روش دارای مشکلات و محدودیتهایی میباشد. بنابراین استفاده از روشهای ارزانتر و آسانتر بسیار مطلوب میباشد. این کار تحقیقاتی روش جدیدی را برای اندازهگیری غلظت محلول مواد رنگزا به کمک پویشگر بیان مینماید. در این روش از شبکه عصبی برای برقراری ارتباط بین پارامترهای رنگی RGB تصویر محلول اسکن شده و غلظت رنگزا استفاده ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 4
صفحات 925- 939
تاریخ انتشار 2019-06-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023