تعیین روش بهینه طبقه بندی و نقشه سازی کاربری/ پوشش اراضی با مقایسه الگوریتم های شبکه عصبی مصنوعی وماشین بردار پشتیبان با استفاده از داده های ماهواره ای (مطالعه موردی: تالاب بین المللی هامون)
نویسندگان
چکیده مقاله:
زمینه و هدف: طبقه بندی تصاویر یکی از روش های مهم درتفسیرتصاویر ماهواره ای است که کاربرد زیادی در بررسی تغییرات زمین دارد. در این میان داده های ماهواره ای به دلیل ارایه اطلاعات به روز، ارزان بودن و تنوع اشکال بهترین وسیله برای آشکارسازی و ارزیابی تغییرات شناخته شده است. از طرفی دیگر در سال های اخیر روش های شبکه های عصبی مصنوعی به طور وسیع و گسترده جهت طبقه بندی داده های ماهواره ای استفاده می شود. هدف از این پژوهش مقایسه سه روش مختلف جهت طبقه بندی پوشش اراضی با استفاده از تصویر سنجده OLI سال 2014 طی یک دوره 26 ساله می باشد. روش بررسی: در این مقاله تصویر سنجنده OLI (1393) از لحاظ هندسی و اتمسفری در نرم افزار ENVI تصحیح شد. سپس جهت طبقه بندی تصویر به سه روش شبکه های عصبی مصنوعی آرتمپ فازی، شبکه عصبی مصنوعی پرسپترون چند لایه و روش ماشین بردار پشتیبان با استفاده از نرم افزار IDRIS Selva، نقشه پوشش اراضی به پنج کلاس آب، پوشش گیاهی، نیزار، اراضی بایر و اراضی شور طبقه بندی گردید. در نهایت به منظور ارزیابی صحت با استفاده از صحت کاربر، صحت تولید کننده، صحت کلی، ضریب کاپا و ماتریس خطا، نقشه ایجاد شده با نقشه واقعیت زمینی ایجاد شده توسط GPS و تصاویر گوگل ارث و بازدیدهای صحرایی مورد مقایسه قرار گرفت. بحث و نتیجهگیری: نتایج نشان دادند که روش آرتمپ فازی بیش ترین میزان دقت را با صحت کل 94.68 و ضریب کاپای91/. نسبت به دو روش شبکه عصبی مصنوعی پرسپترون چند لایه با صحت کل 92.99 و ضریب کاپای 89/. و ماشین بردار پشتیبان با صحت کل 90.93و ضریب کاپای 85/. در طبقه بندی داده های ماهواره ای دارد.
منابع مشابه
مقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...
متن کاملمقایسه روش های طبقه بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربری های اراضی از تصاویر ماهواره ای لندست tm
طبقه بندی و تهیه نقشه کاربری های اراضی یکی از پرکاربردترین موارد در استفاده از داده های سنجش از دور است. تعدادی از روش های پیشرفته تر طبقه بندی در دهه های گذشته توسعه پیداکرده اند که از آنها می توان به شبکه های عصبی مصنوعی و ماشین بردار پشتیبان اشاره کرد. در این مطالعه از تصاویر لندستtm باقدرت تفکیک 30 متر جهت استخراج کاربری های اراضی با استفاده از دو روش طبقه بندی شبکه عصبی مصنوعی و ماشین بردا...
متن کاملارزیابی کارایی الگوریتم های ماشین بردار پشتیبان جهت طبقه بندی کاربری اراضی با استفاده از داده های ماهواره ای etm+ لندست (مطالعه موردی: حوزه سد ایلام)
طبقهبندی کاربری اراضی با استفاده از تصاویر سنجش از دور یکی از مهمترین کاربردهای سنجش از دور است و بسیاری از الگوریتمها برای این منظور توسعه یافتهاند. این مطالعه کارایی الگوریتمهای ماشین بردار پشتیبان[1](svms) را در طبقهبندی تصاویر ماهوارهای مورد بررسی قرار میدهد. ماشینهای بردار پشتیبان یک گروه از الگوریتمهای طبقهبندی نظارت شده یادگیری ماشینی هستند که در زمینه سنجش از دور مورد استفاده ...
متن کاملمقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...
متن کاملتهیه نقشه کاربری اراضی دشت عباس ایلام با استفاده از روشهای شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال
یکی از ضروریترین اطلاعات مورد نیاز مدیران و متولیان منابع طبیعی، نقشههای کاربری اراضی میباشد. در پژوهش حاضر، بهمنظور تهیة نقشة کاربری اراضی دشت عباس از دادههای رقومی سنجنده (1386)ETM+ استفاده شد. ابتدا تصویر با میانگین خطای مربعات 47/0 پیکسل تصحیح هندسی شد. جهت طبقهبندی تصویر از روشهای طبقهبندی شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال استفاده شد. در نهایت، نقشة پوشش اراضی م...
متن کاملبررسی تأثیر باند حرارتی و الگوریتم های طبقه بندی نظارت شده داده های ماهواره ای در تهیه نقشه های کاربری اراضی (مطالعه موردی: کاشان)
امروزه دادههای سنجش از دور قادر به ارائه جدیدترین اطلاعات برای مطالعه پوشش زمین و کاربریهای اراضی میباشند. این تصاویر بدلیل ارائه اطلاعات به هنگام، تنوع اشکال، رقومی بودن و امکان پردازش در تهیه نقشههای کاربری از اهمیت بالایی برخودارند. مشخص کردن موقعیت هر کاربری و پوشش اراضی در کنار یکدیگر کمک شایانی به مدیران مناطق جهت تصمیمگیری میکند. همچنین با استفاده از نقشههای کاربری اراضی در سطوح مخ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 20 شماره 5
صفحات 193- 208
تاریخ انتشار 2019-01-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023