تعیین اثر پیش پردازش داده بر عملکرد شبکۀ عصبی مصنوعی بهمنظور پیش بینی بارش ماهانه در شهرستان آباده
نویسندگان
چکیده مقاله:
توابع تبدیل صورت میگیرد. در پژوهش حاضر با استفاده از اطلاعات میانگین بارش ماهانه، کمترین و بیشترین دما و رطوبت ایستگاه سینوپتیک شهرستان آباده در بازۀ زمانی 1355 تا 1392 بهصورت نرمالشده و خام بهعنوان ورودیهای شبکۀ پرسپترون چندلایه، بارش ماه آیندۀ شهرستان پیشبینی شد. برای نرمالسازی دادههای هواشناسی، پس از بررسی وجود داشتن یا نداشتن دادههای گمشده و پرت از سه روش نرمالسازی مینیممـ ماکزیمم، رتبهای و آمارۀ نرمال استاندارد استفاده شد. پس از بهدستآوردن بهترین ساختار شبکه با استفاده از آزمون و خطا برای هر روش از مقایسۀ بهترین ساختارهای هر روش با یکدیگر، روش مینیممـ ماکزیمم با ساختار شبکۀ سهلایه و تعداد 13 نورون در لایۀ پنهان با مقدار 92/0=R و 12/0=MSE در مقایسه با دیگر روشها بهعنوان بهترین روش انتخاب شد. نتایج آنالیز حساسیت انجامشده نیز نشان داد مدل به حذف پارامتر بیشترین رطوبت بیشتر از سایر پارامترها حساسیت نشان داد. پس از آن نیز دمای حداکثر بیشترین تأثیر را بر پیشبینی بارش داشت. همچنین مقایسۀ عملکرد شبکه با تعداد ورودیهای مختلف نشان داد شبکه با داشتن دو ورودی شامل کمترین دما و رطوبت با مقدار 13/0= MSE در مواقعی که کمبود داده وجود دارد نسبت بهتعداد پنج ورودی به نتیجۀ خوبی رسید.
منابع مشابه
کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...
متن کاملپیش بینی بارش ماهانه در منطقه ایران با استفاده از ترکیب شبکه های عصبی مصنوعی و فیلتر کالمن توسعه یافته
بارش باران یکی از مهمترین پدیدههای جوّی است که بر زندگی بشر اثر میگذارد. پیشبینی بارش باران برای اهداف مختلفی مانند برنامهریزی فعالیتهای کشاورزی، پیش<st...
متن کاملپیش بینی بارش ماهانه با استفاده از شبکه های عصبی مصنوعی (مورد: تهران)
گسترش سریع استفاده از شبکه های عصبی مصنوعی ( ann) به عنوان مدل تجربی و کارآمد در علوم مختلف از جمله هواشناسی و اقلیم شناسی نشان دهنده ضرورت ارزش بالای مطالعه این مدل هاست. پیش بینی بارش برای اهداف مختلفی نظیر برآورد سیلاب، خشکسالی، مدیریت حوضه آبریز، کشاورزی و ... دارای اهمیت بسیاری است. هدف این مقاله پیش بینی بارش ماهانه با استفاده از شبکه های عصبی مصنوعی در شهر تهران می باشد. در این تحقیق از ...
متن کاملارزیابی دقت شبکه عصبی مصنوعی بازگشتی نارکس در پیش بینی بارش روزانه در استان کرمان
بارش یکی از پارامترهای مهم اقلیمشناسی و سایر علوم جوّی که از اهمیّ تّ والای یّ در حیات بشر برخوردار است. در سالهای اخیر، سیل و خشکسالی خسار های فراوانی را در بس یّاری از مناطق جهان در پی داشته است. پیش بینی بارش در مدیریت و هشدار این معضلا نق شّ مهمی بر عهده دارد. امروزه شبکههای عصبی مصنوعی از جمله روشهای نوین م یّباش دّ ک هّ برای تخمین و پیشبینی پارامترها با استفاده از ارتباط ذاتی بین دادهه اّ توس عّه یا...
متن کاملپیش بینی دراز مدت میزان بارش (ماهانه و فصلی) با استفاده از شبکه های عصبی مصنوعی
این پژوهش، روش شبکه های عصبی با الگوریتم پس انتشار خطا را برای پیش بینی بلند مدت بارندگی در مقیاس زمانی ماهانه و فصلی در ایران مورد بررسی قرار می دهد. در این راستا به منظور پیش بینی بلند مدت بارش در ماه های اکتبر تا مارس و فصول پاییز و زمستان، از داده های 14 ایستگاه سینوپتیکی کشور و همچنین، دو شاخص اقلیمی بزرگ مقیاس soi و nino3,4در بازه ی زمانی (2010 – 1960) به مدت 51 سال بهره گرفته شد. پروژه د...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 1
صفحات 29- 37
تاریخ انتشار 2017-03-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023