ترکیب ماشین بردار پشتیبان و مدلهای پیش آموزش دیدهی شبکه عصبی کانولوشن به منظور طبقهبندی تومورهای مغزی در تصاویر امآرآی
نویسندگان
چکیده مقاله:
به دلیل محل رشد تومورهای مغزی در سر انسان، معمولا احتمال مرگ بر اثر این تومورها، شش برابر بیشتر از تومورهای دیگر است. سیستمهای کامپیوتری را میتوان برای کاهش تجویز درمانهای نامناسب و کمک به متخصصان در تشخیص این بیماری استفاده کرد. در این مقاله از یک الگوریتم جدید بهمنظور تشخیص تومورها در 900 تصویر امآرآی استفاده شده است. این الگوریتم مشتمل بر چهار فاز اصلی است که در فاز اول بعد از ورود دادهها عملیات پیشپردازش بر روی تصاویر با استفاده از روش یکسانسازی هیستوگرام انجام میشود. در فاز دوم با استفاده از دو مدل پیش آموزشدیده شبکه عصبی کانولوشن، استخراج ویژگی انجام میشود. استفاده از مدلهای پیش آموزشدیده شبکه عصبی کانولوشن باعث میشود که ویژگیها با کیفیت بالاتر، نسبت به روشهای سنتی از تصاویر استخراج شود. به علت ایجاد ویژگیهای فراوان توسط مدلهای شبکه عصبی کانولوشن، در فاز سوم از روش تحلیل مؤلفههای اصلی احتمالی بهمنظور کاهش ابعاد و وابستگی استفاده میشود که در نهایت 100 ویژگی اصلی از هر مدل استخراج میشود. در فاز چهارم طبقهبندی با استفاده از الگوریتم ماشین بردار پشتیبان انجام میشود. بهمنظور مقایسه نتایج، از سه شاخص ویژگی، حساسیت، و دقت استفاده شده است. نتایج مقایسهای نشان میدهد که الگوریتم پیشنهادی عملکرد مناسبی در اکثر دادهها دارد.
منابع مشابه
مقایسه روشهای طبقهبندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربریهای اراضی از تصاویر ماهوارهای لندست TM
Land use classification and mapping mostly use remotely sensed data. During the past decades, several advanced classification methods such as neural network and support vector machine (SVM) have been developed. In the present study, Landsat TM images with 30m spatial resolution were used to classify land uses through two classification methods including support vector machine and neural network...
متن کاملاستفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان
پیشبینی مقادیر جریان ورودی به سیستم منابع آب بهمنظور آگاهی از شرایط آینده و برنامهریزی برای تخصیص بهینه منابع آب به بخشهای مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب میباشد. هدف از پژوهش حاضر پیشبینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از دادههای هیدرومتری ایستگاه قزاقلی با دوره آماری 47 سال و سه مدل سریزمانی، شبکه عصبی و ماشین بردار پشت...
متن کاملشناسایی گردوغبار در تصاویر ماهوارهای MODIS با استفاده از روشهای ماشین بردار پشتیبان، شبکه عصبی مصنوعی و درخت تصمیمگیری
یکی از مهمترین بلایای طبیعی که طی سالیان اخیر موردتوجه قرارگرفته، پدیدهی گردوغبار است. در سالهای اخیر این پدیده در ایران ابعاد تازهای گرفته و از یک معضل محلی، به مسئلهای ملی تبدیل شده است. شناسایی و تشخیص طوفان گردوغبار اولین مرحله در بررسی و پایش آن میباشد. این تحقیق باهدف شناسایی مناطق دارای گردوغبار از تصاویر ماهوارهای، در منطقه خاورمیانه انجام گرفته است. در بررسی پدیده گردوغبار تصاویر...
متن کاملتحلیل عدم قطعیت مدلهای شبکه عصبی مصنوعی و ماشین بردار پشتیبان در تخمین بارش
در این تحقیق سعی گردید، ترکیب ورودی و مدل مناسب برای تخمین بارشهای شهرستان شاهرود تعیین گردد. برای رسیدن به این هدف از دادههای ماهانه هواشناسی شامل تبخیر، دما، رطوبت نسبی هوا، تابشهای خورشیدی، سرعت باد در دوره آماری 1342 تا 1394 و مدلهای شبکه عصبی مصنوعی و ماشین بردار پشتیبان استفاده شده است. 75 درصد از دادهها برای واسنجی و 25 درصد دیگر جهت اعتبارسنجی مدلها استفاده شده است. در این تحقیق ...
متن کاملمدلسازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان
امروزه از بتن غلتکی در ساخت سدها و روسازی راهها استفاده میشود و طی سالهای اخیر استفاده از این نوع بتن به علت مزایایی چون کوتاه شدن زمان ساخت، در دسترس بودن مصالح مورد نیاز، عملکرد مناسب در نواحی سرد و عمر مفید طولانی گسترش یافته است. مهمترین خاصیت مکانیکی بتن غلتکی، مقاومت فشاری میباشد که افزایش آن میتواند عملکرد این نوع بتن را بهبود بخشد. حساسیت بتن غلتکی به اجزای تشکیلدهنده آن سبب مشک...
متن کاملمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 1
صفحات 55- 77
تاریخ انتشار 2019-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023