تدوین و ارزیابی مدل های عصبی مصنوعی بمنظور برآورد مقادیر L*a*b* با استفاده از مقادیر RGB تصاویر رنگی به کمک بینایی رایانه ای
نویسندگان
چکیده مقاله:
با توجه به نیاز استفاده از مقادیر رنگی L*، a* و b* به همراه دیگر پارامترهای رنگی از جمله مقادیر R، G و B در کاربردهای کنترل کیفیت رنگی مواد غذایی و کشاورزی، در این پژوهش روشی هوشمند بر پایه سامانه بینایی ماشین ، شبکههای عصبی مصنوعی MLP و روش آماری چند متغیره PLS برای تخمین مقادیر L*a*b* از مقادیر RGB تصاویر رنگی نمونههای مختلف زعفران تدوین گردید. تصاویر رنگی از 33 نمونه مختلف زعفران (165 تصویر) و از صفحات رنگی استاندارد (150 تصویر) تهیه شدند. به کمک سامانه بینایی ماشین توسعه داده شده تصاویر نمونهها دریافت و با استفاده از الگوریتمهای پردازش تصویر، پردازش و ویژگیهای رنگی RGB آنها استخراج گردید. از سوی دیگر ویژگیهای L*a*b* نمونهها توسط دستگاه رنگسنج (به روش هانتر لب) اندازهگیری شدند. مقادیر RGB و تبدیلات خطی آنها به عنوان ورودی مدلها و مقادیر مرتبط L*، a* و b* به ترتیب به عنوان خروجی و هدف مدلها در نظر گرفته شدند. در نهایت نتایج نشان داد که مدلهای MLP با دقت بالاتری و ضرایب رگرسیون مناسبتری نسبت به مدلهای PLS مقایر L*، a* و b* نمونه-های زعفران را تخمین میزنند (R2=0.99 و RMSE بترتیب برابر با 769/0، 953/0 و 785/0 برای تخمین هر سه ویژگی L*، a* و b*). در نهایت میتوان امکان استفاده از سامانه بینایی ماشین را برای کنترل کیفیت رنگی زعفران بیان کرد.
منابع مشابه
تقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی
هدف از این مقاله، تعیین فرکانس زاویهای طبیعی ورقها با توجه به شرایط مختلف تکیهگاهی به کمک شبکه عصبی مصنوعی است. یکی از مشهورترین روشهای آموزش شبکه عصبی، استفاده از الگوریتم انتشار برگشتی است. این الگوریتم برای آموزش شبکههای چند لایه قابل کاربرد است. الگوریتم انتشار برگشتی بر مبنای کاهش گرادیان بوده و در آن شیب خطا به تدریج کم شده و وزنهای شبکه برای رسیدن به حداقل خطا، تعدیل میشود. در این...
متن کاملبرآورد استحکام فشاری ماسه ریخته گری در مقادیر گوناگون رطوبت با استفاده از شبکه عصبی مصنوعی
کیفیت قطعات ریخته گری در قالب گیری ماسه به گونهای چشم گیر به خواص ماسه مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، تعداد 84 آزمایش عملی برای بدست آوردن داده های مورد نیاز برای شبیه سازی که همان استحکام فشاری ماسه در درصد رطوبت های معین بودند، انجام گرفته اس...
متن کاملتقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی
هدف از این مقاله، تعیین فرکانس زاویه ای طبیعی ورقها با توجه به شرایط مختلف تکیه گاهی به کمک شبکه عصبی مصنوعی است. یکی از مشهورترین روشهای آموزش شبکه عصبی، استفاده از الگوریتم انتشار برگشتی است. این الگوریتم برای آموزش شبکه های چند لایه قابل کاربرد است. الگوریتم انتشار برگشتی بر مبنای کاهش گرادیان بوده و در آن شیب خطا به تدریج کم شده و وزنهای شبکه برای رسیدن به حداقل خطا، تعدیل می شود. در این...
متن کاملبرآورد استحکام فشاری ماسه ریخته گری در مقادیر گوناگون رطوبت با استفاده از شبکه عصبی مصنوعی
کیفیت قطعات ریخته گری در قالب گیری ماسه به گونه ای چشم گیر به خواص ماسه مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، تعداد 84 آزمایش عملی برای بدست آوردن داده های مورد نیاز برای شبیه سازی که همان استحکام فشاری ماسه در درصد رطوبت های معین بودند، انجام گرفته اس...
متن کاملبرآورد مقادیر نشت از سدهای خاکی با استفاده از روشهای هوش مصنوعی
استفاده از پتوی رسی در مخازن سدها یکی از روشهای اصلی کاهش نشت میباشد. در این مطالعه ابتدا با مدلسازی پتوی رسی در مخزن سد توسط روش المان محدود، با استفاده از تغییر پارامترهای موثر، 320 داده نشت بهدست آمد. اعتبارسنجی روش المان محدود نیز با مقایسه نتایج نشت حاصل از روش المان محدود و نتایج آزمایشگاهی صورت گرفت. برای بررسی مناسبترین مدل برای پیشبینی مقادیر نشت (حاصل از مدلسازیها) از پنج رو...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 1
صفحات 151- 158
تاریخ انتشار 2017-11-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023