تخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی
نویسندگان
چکیده مقاله:
انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهایبرخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازیدر پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی ازتکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینامیکحاکم بر سیستم را استخراج نموده و از این طریق، خروجی مدل را پیشبینی نمود. در این مطالعه ضریب انتشار طولی باتوجه به مقادیر پارامترهای هیدرولیکی و هندسی رودخانه ها به عنوان پارامترهای ورودی و با استفاده از شبکه عصبیمصنوعی پیش بینی گردید. نتایج نشان داد شبکه پرسپترون پیشخور، پس انتشار خطا از دقت مناسبی برای تخمین ضریبپخش طولی آلودگی برخوردار است. نتایج تحلیل ترکیب پارامترهای ورودی نشان داد که با لحاظ نسبت سرعت به سرعت0 % و در صورت لحاظ / 0 و تابع خطا برابر 87 / برشی بهعنوان پارامتر ورودی مدل، میزان ضریب تعیین همبستگی 841/ 0 و تابع خطا برابر 01 / نسبت عرضجریان به عمق جریان بهعنوان پارامتر ورودی، میزان ضریب تعیین همبستگی 7% حاصل شد. بنابراین نسبت سرعت بهسرعت برشی یا ضریب زبری دارای تأثیر بیشتری بر ضریب انتشار طولی است.روشارائهشده در این تحقیق رهیافتی کارآمد در تخمین ضریب پخش طولی آلودگی در رودخانه ها محسوب شده و قابلیتترکیب با سایر مدلهای پخش آلودگی را دارا میباشد.
منابع مشابه
تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
متن کاملتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
متن کاملتخمین ضریب فشار جانبی ماسه ها با استفاده از آزمایش نفوذ مخروط در محفظه کالیبراسیون و شبکه عصبی مصنوعی
تعیین دقیق و مناسب پارامترهای خاک همواره در طراحیهای ژئوتکنیکی مورد توجه بوده است. پیش بینی دقیق پارامترهای تاثیرگذار ماسه از آزمایشات برجا نظیر (CPT)، یکی از چالشیترین مسایل در مهندسی ژئوتکنیک است. در این تحقیق با استفاده از نتایج آزمایش کالیبراسیون نفوذ مخروط که در دانشگاهها و موسسات معتبر انجام شدهاند و همچنین سیستمی متشکل از سه نوع شبکه عصبی مصنوعی، پارامتر ضریب فشار جانبی ماسه در حالت ...
متن کاملتخمین ضریب پخش طولی در جریانهای سطحی با استفاده از آنالیز ابعادی
ضریب پخش طولی یکی از پارامترهای مهم در حل معادله انتقال آلودگی در جریانهای سطحی میباشد. در مقاله حاضر رابطه جدیدی به منظور برآورد دقیقتر ضریب پخش طولی در جریان آبهای سطحی ارائه شده است. این رابطه با استفاده از دادههای 176 رودخانه و کانال مختلف و کاربرد تکنیک آنالیز ابعادی بدست آمد. رابطة جدید ارائه شده با 18 رابطة منتخب برای مجموعة دادههای فوقالذکر مورد مقایسه قرار گرفت. نتایج حاکی از دو...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 26 شماره شماره1 بخش 2
صفحات 225- 238
تاریخ انتشار 2016-05-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023