بهینه سازی مشخصات ابعادی در اتصال مواد مرکب چند لایه به کمک شبکه عصبی مصنوعی و الگوریتم ژنتیک
نویسندگان
چکیده مقاله:
در این مقاله حالات و بارهای گسیختگی برای اتصالات چندپینی در ورق مواد مرکب الیاف شیشهای اپوکسی تک جهته، با استفاده از روش اجزای محدود و آزمونهای تجربی تحلیل میشوند. به علاوه با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک، الگویی معرفی میشود که در آن پینها در موقعیت بهینهشدهای قرار گیرند. در اتصالات چند پینی، تغییرات گام نسبت به قطر پین، عرض ورق نسبت به قطر پین و نسبت فاصله از لبه ورق به قطر پین بر نحوه گسیختگی اتصال تأثیر بسزایی دارند. با توجه به این که برای اینگونه ورقها حل دقیقی از گسیختگی وجود ندارد، برای بهینهسازی در هر مورد شبیهسازیهای متعدد اجزای محدود انجام و نتایج آن با استفاده از شبکه عصبی برازش میگردد. الگوی برازش شده این شبکه به عنوان ورودی الگوریتم ژنتیک استفاده میشود. با در نظر گرفتن قیود مسأله و مشخصههای ابعادی، الگویی بهینه با این شرط که گسیختگی در آنها نسبت به بقیه نمونهها دیرتر اتفاق بیفتد، ارائه میگردد. نتایج آزمایشگاهی و اجزای محدود باهم مقایسه گردیده و میزان تفاوت بین آنها تحلیل خواهد شد.
منابع مشابه
برآورد مشخصات پرش هیدرولیکی متحرک با کاربرد شبکه عصبی مصنوعی و روش تلفیقی شبکه عصبی-الگوریتم ژنتیک
پرش هیدرولیکی متحرک، حالت خاصی از جریان غیرماندگار است که باعث تغییر رژیم و وقوع ناپیوستگی هیدرولیکی در جریان می شود . در روندیابی جریان غیرماندگار و یا برنامه های بهره برداری کانال های روباز، آگاهی از رفتار چنین جریانی در باز ه ها ضروری است . این درحالی است که شبیه سازی عددی این پدیده به واسطه وجود ناپیوستگی هیدرولیکی و غیرماندگاری جریان، پیچیده است و داده های آزمایشگاهی در این مورد نیز محدو...
متن کاملبهینه سازی بازده نموداری توربین بخار به کمک الگوریتم ژنتیک
امروزه تولید برق مهمترین بخش تولید انرژی در صنایع را به خود اختصاص داده است که در این رهگذر، بهینهسازی مصرف انرژی و توان نیروگاهی میتواند در صرفهجویی انرژی مفید واقع شود. یکی از بخشهای مهم نیروگاهی، طراحی و ساخت توربینها، اعم از توربینهای هیدرولیکی، بخاری، بادی و هستهای میباشد. بدین منظور طراحی نیروگاهها بهعنوان مهمترین موضوع مد نظر قرار میگیرد. در این مقاله، با توجه به روابط مهندس...
متن کاملمدل سازی و بهینه سازی واحد تولید هیدروژن با شبکه ی عصبی مصنوعی و الگوریتم ژنتیک
هدف اصلی این پژوهش، مدل سازی واحد صنعتی تولید هیدروژن براساس تبدیل متان با بخار آب با کاربرد شبکه ی عصبی مصنوعی است. عامل های دبی فراورده و انرژی مصرفی به عنوان عامل های خروجی مدل در نظر گرفته شد و دو شبکه ی عصبی مجزا برای پیش بینی این دو عامل مدنظر قرارگرفت. نتیجه های مدل سازی با دقت بسیار خوب، خطای متوسط مطلق، خطای متوسط نسبی و خطای احتمالی بین داده های واقعی کارخانه و مدل را به ترتیب برابر ب...
متن کاملمدلکردن و بهینه سازی سنتز آنزیمی کافئیک اسید فن اتیل استر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
در این تحقیق، واکنش کافئیک اسید و 2- فنیل اتانول در حضور لیپاز تثبیت شده از مخمر آنتارکتیکا (نووزیم 435) به منظور تولید کافئیک اسید فن اتیل استر در سیستم ایزواکتان با استفاده از روشهای شبکه عصبی مصنوعی و ژنتیک الگوریتم مدل سازی و بهینه گردید. بدین منظور ازیک طرح مرکب مرکزی چرخش پذیر با 4 متغیر و 5 سطح جهت مدل کردن واکنش آنزیمی به کمک شبکه عصبی مصنوعی استفاده شد. متغیرهای مستقل شامل دما، زمان، ...
متن کاملتحلیل پارامتری و بهینه سازی سیکل تبرید اجکتوری فوق بحرانی همراه با سیال عاملهای مختلف به کمک شبکه عصبی مصنوعی و الگوریتم بهینه سازی پرندگان
در این مقاله، به بررسی پارامتری و بهینه سازی سیکل تبرید اجکتوری همراه با سیال عامل های مختلف پرداخته شده است که قابلیت استفاده در بخشی از فرایند استفاده از انرژی خورشیدی را دارا میباشد. مزیت اصلی استفاده از اجکتور در سیکل های تبرید که معمولاً به جای کمپرسور بکار می رود، سادگی در ساخت و نگه داری، اطمینان پذیری بالا و هزینه ی کم می باشد. در این مطالعه، سیکل تبرید اجکتوری فوق بحرانی با استفاده از ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 47 شماره 1
صفحات 373- 377
تاریخ انتشار 2017-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023