بهبود دقت روش هارگریوز در برآورد تبخیر- تعرق مرجع به کمک ضریب اصلاحی با مدل شبکه عصبی مصنوعی و درخت تصمیم M5
نویسندگان
چکیده مقاله:
تبخیر- تعرق یکی از مهم ترین اجزای چرخه هیدرولوژی است که مدلسازی آن در مدیریت منابع آب نقش مهمی دارد. در تحقیق حاضر امکان بهبود دقت برآورد تبخیر- تعرق روش هارگریوز به کمک ضریب اصلاحیK با استفاده از مدل شبکه عصبی مصنوعی و مدل درخت تصمیم M5 مورد بررسی قرار گرفت. این ضریب برابر با نسبت تبخیر- تعرق مدل پنمن مونتیث فائو به روش هارگریوز می باشد. داده های مورد استفاده این تحقیق عبارت از دمای حداکثر و حداقل و رطوبت نسبی در بازه ی زمانی 2013-2004 از ایستگاه فرخشهر و فرودگاه در منطقه ی خشک سرد شهرکرد می باشد. شبکه طراحی شده یک شبکه پرسپترون چند لایه با الگوریتم آموزشی لونبرگ مارکوات و تابع تانژانت سیگموئید در لایه پنهان می باشد. مدل درخت تصمیمم به کمک نرم افزار WEKA طراحی گردید. نتایج نشان می دهد که شبکه عصبی و مدل درخت تصمیمم عملکرد خوبی در مدلسازی ضریب اصلاحی دارند، ولی عملکرد مدل شبکه عصبی دقیق تر است. نتایج نشان داد که قبل از استفاده از ضریب اصلاحی دقت مدل هارگریوز RMSE=0.90 (ریشه میانگین مربعات خطا) نسبت به روش پنمن مونتیث فائو بود که این مقدار بعد از استفاده از ضریب اصلاحی به کمک شبکه عصبی به RMSE=0.69 و با از استفاده از ضریب اصلاحی به کمک درخت تصمیمم به RMSE=0.72 رسید. به طور کلی نتایج نشان داد که بعد از استفاده از ضریب اصلاحی عملکرد مدل هارگریوز بهبود یافته است.
منابع مشابه
تخمین تبخیر و تعرق مرجع روزانه به کمک مدل درخت تصمیمM5 و شبکه عصبی مصنوعی
تعیین دقیق آب مصرفی گیاه باعث افزایش راندمان آبیاری و بهبود مدیریت آب در مزرعه را دنبال دارد. تبخیر و تعرق یک از اجزای اصلی چرخهی هیدرولوژی محسوب میشود و برآورد دقیق آن در مدیریت منابع آب نقش اساسی دارد. در این تحقیق به ارزیابی مدل درختی M5 و مدل شبکهی عصبی تحت شرایط مختلف حداقل دادهی اقلیمی در یک منطقهی خشک سرد پرداخته شد. دادههای مورد استفاده در این تحقیق شامل دمای حداقل و حداکثر، رطو...
متن کاملارائه ضریب اصلاحی برای روش هارگریوز-سامانی به منظور برآورد تبخیر- تعرق گیاه مرجع (مطالعه موردی: ایستگاه سینوپتیک گرگان)
متن کامل
مقایسه مدل درخت تصمیم m5 و رگرسیون چند متغیره در ارائه مناسبترین ضریب اصلاحی روش هارگریوز- سامانی برای برآورد منطقه ای تبخیر- تعرق
تبخیر و تعرق از اساسی ترین اجزای چرخه ی هیدرولوژی است که تعیین صحیح آن در علوم آب از قبیل مطالعـات تـوازن هیـدرولوژیکی، طراحـی و مدیریت سیستم های آبیاری از اهمیت بالایی برخوردار است. پژوهش حاضر امکان افزایش دقت برآورد تبخیر-تعرق به روش هارگریوز-سامانی را بر اساس ضریب اصلاحی k بررسی می کند. این ضریب که نسبت برآورد تبخیر-تعرق با دو روش فائو پنمن-مانتیت (f-p-m) و هارگریوز-سامانی مـی باشـد بـر اساس...
شبیهسازی و مقایسهی تبخیر و تعرق پتانسیل به روشهای شبکه عصبی مصنوعی، نروفازی ودرخت تصمیمگیریM5 (مطالعه موردی؛ ایستگاه سینوپتیک شیراز )
تخمین صحیح تبخیر و تعرق در طراحی، مدیریت سیستمهای آبیاری و زهکشی از اهمیت زیادی برخوردار است. یکی از روشهای تخمین تبخیر و تعرق، که در حل این مسائل و پیشبینی آن کاربرد زیادی دارد، روشهای نروفازی (ANFIS)، شبکههای عصبی مصنوعی (ANNs) و درخت تصمیمگیری M5 میباشند. هدف از این تحقیق، بررسی کارایی روشهای مذکور در برآورد تبخیر و تعرق مرجع در ایستگاه هواشناسی شیراز میباشد، بدین منظور دادههای هو...
متن کاملبرآورد تبخیر- تعرق مرجع روزانه با استفاده از روش های داده کاوی رگرسیون بردار پشتیبان و مدل درختی M5
Evapotranspiration is one of the most important components of the hydrological circle and its proper determination is highly important in most researches such as water hydrological balance, design and management of irrigation systems, simulation of crop production and design and management of water resources. Nonlinear characteristic, uncertainty and needing for different climatological data in...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 1
صفحات 36- 47
تاریخ انتشار 2018-06-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023