برهانی مقدماتی برای فرمول گرگوری- منگولی - مرکاتور
نویسنده
چکیده مقاله:
در این مقاله برهانی مقدماتی برای فرمول مشهوری که نشان می دهد مقدار سری همساز متناوب برابر با log2 است، ارائه می شود. اثبات بر مبنای مفاهیم ساده حساب دیفرانسیل و انتگرال است.
منابع مشابه
برهانی برای قضیه کیلی - همیلتن
در این نوشته، برهانی غیر از برهان استاندارد برای قضیه کیلی - همیلتن ارائه می شود که بر مبنای استفاده از سری های توانی صوری استوار است.
متن کاملبرهانی برای قضیه کیلی - همیلتن
در این نوشته، برهانی غیر از برهان استاندارد برای قضیه کیلی - همیلتن ارائه می شود که بر مبنای استفاده از سری های توانی صوری استوار است.
متن کاملبرهانی جدید برای قضیهای کلاسیک در نظریۀ گروههای متناهی
قضیه ای کلاسیک در نظریۀ گروه ها می گوید اگر G یک 2-گروه متناهی باشد که تنها یک عضو مرتبۀ 2 دارد، آن گاه G دوری است یا با یک ٢-گروه کواترنیون تعمیم یافته یکریخت است. هدف این نوشته، ارائۀ برهانی جدید برای این قضیه است.
متن کاملبرهانی ساده از قضیه رل برای هیات های متناهی
یکی از قضایای اساسی در حساب دیفرانسیل قضیه رل است: ریشه های مشتق یک تابع بین ریشه های آن تابع قرار دارد. یک نتیجه قضیه رل این است که اگر یک چندجمله ای با ضرایب حقیقی روی هیات اعداد حقیقی شکافته شود، آن گاه مشتق آن نیز چنین خواهد شد. از این رو می توانیم سوال کنیم که برای چه هیات های دیگری چندجمله ای ها از خاصیت رل پیروی می کنند. ما این پرسش را برای هیات های متناهی تنها با استفاده ار نتایج اساسی ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 30 شماره شماره 46
صفحات 33- 37
تاریخ انتشار 2011-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023