بررسی عملکرد شبکههای عصبی مصنوعی در برآورد بیشترین ژرفای آبشستگی پیرامون آبشکن ها
نویسندگان
چکیده مقاله:
یکی از عوامل اصلی ویرانی آبشکنها آبشستگی میباشد که فرآیندی بسیار پیچیده است. پیچیدگی الگوی جریان پیرامون آبشکنها و گوناگونی عوامل مؤثر بر آبشستگی، موجب پرشماری روابط تجربی و کاهش دامنهی هر یک از آنها، بهدلیل محدودیت شرایط آزمایشگاهی میشود. در این تحقیق امکان استفاده از شبکههای پرسپترون چندلایه(MLP) برای برآورد بیشترین ژرفای آبشستگی پیرامون سه نوع آبشکن شامل آبشکنهایی با دیوارهی عمودی، بالدار و نیمدایرهای مورد مطالعه قرار گرفتند. دستاوردهای شبیه شبکه عصبی مصنوعی با نتایج بهدست آمده از رابطهی تجربی پیشنهادی بهوسیلهی باربهیوا و دی(2004) مقایسه گردیدند. هشت نمایشنامه بر اساس فراسنجهای مؤثر و شبکههای با ورودیهای مختلف برای پیشبینی ژرفای آبشستگی تعریف شدند. مقایسهی نتایج نمایشنامههای مختلف نشان دادند که نمایشنامه ای که تنها از دو فراسنج و برای برآورد ژرفای آبشستگی در پیرامون آبشکن استفاده میکند، از عملکرد بهتری برخوردار است. همچنین، نتایج تحلیل حساسیت نشان دادند که فراسنجهای و بیشترین تأثیر را در پیشبینی ژرفای آبشستگی آبشکن دارند. مقایسه نتایج شبیه شبکههای عصبی و مقادیر محاسبه شده از رابطهی تجربی با دادههای آزمایشگاهی نشان دادند که مقادیر بیشترین ژرفای آبشستگی بهدست آمده از روش شبکههای عصبی مصنوعی از دقت بیشتری نسبت به رابطه-ی تجربی برخوردارند. همچنین، دقت شبکههای عصبی مصنوعی در برآورد ژرفای آبشستگی پیرامون آبشکنهای با دیوارهی عمودی در مقایسه با دو نوع آبشکن دیگر بیشتر است.
منابع مشابه
بررسی عملکرد شبکه های عصبی مصنوعی در برآورد بیشترین ژرفای آبشستگی پیرامون آبشکن ها
یکی از عوامل اصلی ویرانی آبشکن ها آبشستگی می باشد که فرآیندی بسیار پیچیده است. پیچیدگی الگوی جریان پیرامون آبشکنها و گوناگونی عوامل مؤثر بر آبشستگی، موجب پرشماری روابط تجربی و کاهش دامنه ی هر یک از آنها، به دلیل محدودیت شرایط آزمایشگاهی می شود. در این تحقیق امکان استفاده از شبکه های پرسپترون چندلایه(mlp) برای برآورد بیشترین ژرفای آبشستگی پیرامون سه نوع آبشکن شامل آبشکنهایی با دیواره ی عمودی، با...
متن کاملبرآورد بیشترین ژرفای آبشستگی در پیرامون پایه های پل با بهرهوری از شبکه های وایازی کلی و پرسپترون چند لایهای
در این مطالعه، شبکههای وایازی کلی (GRNN) و پرسپترون چند لایهای (MLP) برای برآورد بیشترین ژرفای آبشستگی مورد بهرهوری قرار گرفتند. الگوریتمهای Levenberg-Marquardt و Momentum به عنوان الگوریتمهای آموزشی، و دو تابع Tanh و Sigmoid نیز به عنوان توابع فعالساز در این پژوهش جهت ساختن شبیه های عصبی به کار رفتند. تاکنون مطالعات گستردهای در زمینهی استفاده از شبیههای مختلف شبکهی عصبی جهت برآورد ...
متن کاملبررسی آزمایشگاهی آبشستگی پیرامون آبشکن T شکل تحت تأثیر آبشکن-های بالادست و پاییندست
فرسایش و آبشستگی از مهمترین مسائل نگران کننده در ارتباط با کنارههای رودخانه و سواحل میباشد. استفاده از آبشکنها، از جمله روشهای نوین کنترل و کاهش فرسایش میباشد. آبشکنها به اشکال مختلفی نظیر آبشکن ساده، L شکل و T شکل هستند. در این پژوهش آزمایشگاهی، تأثیر هندسه مختلف آبشکنهای بالادست و پاییندست بر آبشستگی آبشکن T شکل میانی برای سری آبشکنهای ترکیبی مطالعه شده است و بهترین ترکیب جهت افزا...
متن کاملمدلسازی آبشستگی اطراف آبشکن در قوسها با استفاده از منطق فازی و شبکه عصبی مصنوعی
آبشکن سازهای است از جنس سنگ، شن، پاره سنگ، خاک و یا بتن که با زاویهای نسبت به کرانه رودخانه جهت انحراف جریان آب از سواحل به مرکز آن به منظور جلوگیری از آبشستگی سواحل احداث میشود. از جمله مشکلات مهم مربوط به این سازه که ممکن است پایداری آن را به خطر اندازد، آبشستگی اطراف آن میباشد. لذا مدلسازی میزان آبشستگی اطراف این سازه بر اساس شرایط جریان از اهمیت بالایی برخوردار میباشد. در این تحقیق د...
متن کاملبررسی توسعه زمانی آبشستگی اطراف آبشکن های نفوذناپذیر در کانال مستقیم و پیش بینی آن با شبکه های عصبی مصنوعی
این مقاله فاقد چکیده میباشد.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 11
صفحات 1- 10
تاریخ انتشار 2011-12-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023