استفاده از شبکه های عصبی ترکیبی آموزش پذیر اصلاح شده برای پیش بینی روند قیمت سهام (مطالعه موردی : شرکت پتروشیمی خارگ)
نویسندگان
چکیده مقاله:
این مقاله مطالعه ای برای مقایسه توان پیش بینی روند قیمت سه ام با استفاده از شبکه های عصبی ترکیبی آموزش پذیراصلاح شده در مقابل سایر شبکه های آموزش پذیر و غیر آموزش پذیر ترکیبی است . داده های تاریخی به کار رفته در اینتحقیق از شرکت پتروشیمی خارگ، پذیرفته شده در بورس اوراق بهادار ایران بدست آمده اند . شرکت پتروشیمی خا رگ ازبزرگترین تولید کنندگان ایرانی محصولات پتروشیمی از جمله متانول است و به دلیل صادرات محصولات، قیمت سهام آن دربورس اوراق بهادار ایران بسیار متأثر از قیمت جهانی محصولات پتروشیمی، به ویژه متانول، می باشد . بنابراین قیمت سهام آن،نسبت به شرکت هایی که فاقد صادرات محصولات به بازار های جهانی هستند، به گونه ای شفاف تغییر می نماید. از آنجا که دربورس اوراق بهادار ایران نمونه مشابه دیگری که دارای سابقه قیمتی کافی و تعداد سهام شناور بالا باشد 1 وجود ندارد، لذاسهام پتروشیمی خارگ مناسبترین گزینه برای انجام فرآیند تحقیق تشخیص داده شد . نتایج این تحقیق نشان می دهد کهچگونه شبکه های عصبی ترکیبی آموزش پذیر اصلاح شده می تواند گوی سبقت را در قابلیت پیش بینی روند قیمت سهام ازسایر شبکه های ترکیبی آموزش پذیر و غیر آموزش پذیر برباید . این تحقیق همچنان نشان می دهد که چگونه با استفاده ازروش پیشنهادی این مقاله می توان بدون نیاز به اطلاعات تفصیلی و جامع به قابلیت پیش بینی نسبتاً دقیقی دست یافت
منابع مشابه
ترکیب شبکه های عصبی برای پیش بینی قیمت سهام
در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...
متن کاملمدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام
این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...
متن کاملپیش بینی قیمت سهام شرکت های بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی
پیشبینی تغییر قیمت سهام به عنوان یک فعالیت چالشانگیز در پیشبینی سریهای زمانی مالی در نظر گرفته میشود. یک پیشبینی صحیح از تغییر قیمت سهام میتواند سود زیادی را برای سرمایهگذاران به بار آورد. با توجه به پیچیدگی دادههای بازار بورس، توسعه مدلهای کارآمد برای پیشبینی بسیار دشوار است. در این پژوهش، مدلی برای پیشبینی قیمت سهام شرکتهای بورس اوراق بهادار تهران با بکارگیری دادههای درونزا...
متن کاملپیش بینی قیمت سهام شرکت فرآورده های نفتی پارس با استفاده از شبکه عصبی و روش رگرسیونی مطالعه موردی: قیمت سهام شرکت فرآورده های نفتی پارس
یکی از راه های تامین سرمایه برای سرمایه گذاری، انتشار اوراق قرضه و سهام از طریق بازار بورس می باشد. افراد در این بازار انتظار دستیابی به سود را دارند. اولین و مهم ترین عاملی که در اتخاذ سرمایه گذاری در بورس فراروی سرمایه گذار قرار دارد عامل قیمت سهام است که به تبع آن مقوله ارزیابی و پیش بینی قیمت آینده نیز مطرح می شود. فعالان در این بازار درصدد دستیابی و به کارگیری روش هایی هستند تا با پیش بینی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 21 شماره شماره 2(پیاپی 85)
صفحات 159- 174
تاریخ انتشار 2010-06-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023