ارزیابی عملکرد رگرسیون چندمتغیره، شبکه عصبی مصنوعی و برنامه‌ریزی بیان ژن در تخمین برخی خصوصیات خاک

نویسندگان

چکیده مقاله:

چکیده سابقه و هدف: با ظهور سیستم‌های کامپیوتری در کنار سامانه‌ اطلاعات جغرافیایی و دسترسی به داده‌های رقومی مکانی، روش‌های مختلف داده‌کاوی، مدل‌سازی و تخمین خصوصیات خاک، جایگاه خود را در علوم خاک و پدومتری باز کرده است. داده‌کاوی خصوصیات خاک با استفاده از روش‌های آماری کامپیوتر- محور به کشف الگوهای پنهان در بانک اطلاعاتی داده‌ها می‌پردازد که در نهایت منجر به برازش مدل به منظور استفاده و تخمین خصوصیات خاک می‌گردد. یکی از کاربردهای مهم این روش‌ها استفاده در معادله اسکورپن می‌باشد. دو جز اصلی معادله اسکورپن شامل متغیرهای محیطی و برنامه یادگیری می‌باشد. این مطالعه با هدف ارزیابی و مقایسه سه مدل عددی شامل روش رگرسیون چندگانه خطی، شبکه عصبی مصنوعی و برنامه‌ریزی بیان ژن به عنوان برنامه یادگیری (تابع f) در معادله اسکورپن با استفاده از داده‌های دورسنجی، توپوگرافی و پوشش گیاهی به عنوان داده‌های کمکی به منظور تخمین خصوصیات خاک از جمله کربنات کلسیم معادل، رس، چگالی ظاهری، نیتروژن کل، کربن آلی، شن، سیلت و ظرفیت رطوبت اشباع انجام گرفت. مواد و روش‌ها: این پژوهش، در مراتع بخش باجگیران در استان خراسان رضوی و با مساحت 1225 هکتار انجام شد. به منظور بررسی پوشش گیاهی و خاک، تعداد 137 واحد مورد بررسی قرار گرفت. در هر واحد کاری 3 تا 5 پلات با فاصله 10 متر و در امتداد یک برش انتخاب شدند و نوع و تعداد گونه گیاهی و درصد پوشش گیاهی درون پلاتها ثبت گردید. سپس یک نمونه خاکی در هر برش و در مجموع 137 نمونه خاکی از سطح منطقه مورد مطالعه برداشته شد. داده‌های توپوگرافی منطقه از نقشه DEM، داده‌های طیفی و باندهای مختلف از تصاویر سنجنده ETM و شاخص‌های تنوع گیاهی و درصد پوشش گیاهی اندازه‌گیری شد و به عنوان متغیرهای کمکی در پیش‌بینی کربنات کلسیم معادل، رس، چگالی ظاهری، نیتروژن کل، کربن آلی، شن، سیلت و ظرفیت رطوبت اشباع به کار گرفته شدند. به منظور کاهش تعداد داده ورودی در شبکه عصبی مصنوعی و برنامه‌ریزی بیان ژن از نتایج PCR استفاده گردید سپس عملیات نرمال‌سازی و استانداردسازی بر روی داده‌ها صورت گرفت. یافته‌ها: نتایج حاصل از ارزیابی مدل‌های رگرسیون چندگانه، شبکه عصبی مصنوعی و برنامه‌ریزی بیان ژن براساس آماره‌های ارزیابی شامل میانگین اریبی خطا (MBE)، ریشه میانگین مربعات خطا (RMSE) و ضریب تبیین (R2) در فاز آزمون نشان داد که شبکه عصبی مصنوعی پرسپترون، با توجه به مقادیر ضریب تبیین بالاتر برای کربنات کلسیم، رس، نیتروژن کل، کربن آلی، شن، سیلت، ظرفیت رطوبتی و چگالی ظاهری به ترتیب با مقادیر 72/0، 46/0، 67/0، 77/0، 62/0، 7/0، 85/0 و 69/0 و همچنین مقادیر خطای RMSE کمتر با مقادیر به ترتیب 46/7، 46/4، 03/0، 27/0، 6/5، 55/3 و 4/ 3 درصد برای کربنات کلسیم معادل، درصد رس، نیتروژن کل، کربن آلی، درصد شن، درصد سیلت، ظرفیت رطوبت اشباع و 08/0 گرم بر سانتی مترمکعب برای چگالی، بهترین نتایج را از بین روشهای مورد مقایسه نشان داد. روش شبکه عصبی مصنوعی توانست 60 تا 85 درصد تغییرپذیری خصوصیات مورد بررسی را نشان دهد که از بین خصوصیات مختلف، بهترین تخمین برای ظرفیت رطوبت اشباع خاک با 85/0R2= و کربن آلی با 77/0R2= بود. نتیجه‌گیری: نتایج ارزیابی تخمین خصوصیات خاک از طریق سه مدل عددی که بهترین نتایج بدست آمده برای مدل شبکه عصبی مصنوعی پرسپترون بدست آمد. نتایج اعتبارسنجی مدل شبکه عصبی مصنوعی نشان داد که مقدارMBE مدل برای متغیرها نزدیک به صفر بوده و این امر مؤید این مطلب است که برازش، توسط مدل ایجاد شده نااریب بوده است. مقدار RMSE پایین مدل نیز نشان دهنده دقت مناسب و قابل قبول برآورد برای متغیرهای خاک می‌باشد. نتایج الگوریتم بیان ژن نیز حاکی از دقت بالاتر این روش نسبت به رگرسیون خطی برای اکثر خصوصیات خاک بود.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارزیابی مدل‌های رگرسیونی و شبکه عصبی مصنوعی در تخمین هدایت هیدرولیکی اشباع خاک در مازندران

هدایت هیدرولیکی اشباع یکی از خصوصیات مهم هیدرولیکی در علوم مرتبط با آب، خاک و کشاورزی می­باشد که در مدلسازی حرکت املاح و آب در خاک بسیار اهمیت دارد.اندازه­گیری آزمایشگاهی و صحرایی آن دشوار، وقت‌گیر و پرهزینه بوده و امکان شناسایی تغییرپذیری مکانی و زمانی آن در مقیاس وسیع عملا وجود ندارد.امروزه با استفاده از روش­های غیرمستقیم مانند توابع انتقالی می­توان آن را با دقت بالایی برآورد نمود. پژوهش حاضر...

متن کامل

تخمین سرعت نفوذپذیری پایه با استفاده از مدل‌های نروفازی، شبکه عصبی و رگرسیون خطی چندمتغیره

ننفوذ یکی از مهم‌ترین مشخصه‌های فیزیکی خاک است که اندازه‌گیری مستقیم آن دشوار، زمان‌بر و پرهزینه می‌باشد. هدف از این پژوهش تخمین سرعت نفوذپذیری پایه با استفاده مدل‌های نروفازی، شبکة مصنوعی و رگرسیون خطی چند متغیره است. بدین منظور، در 100 نقطه در منطقه دهگلان استان کردستان سرعت نفوذپذیری پایه با استفاده از استوانه مضاعف اندازه‌گیری شد. ویژگی‌های فیزیکی خاک (تخلخل، جرم ویژه ظاهری، شن، سیلت و رس) ...

متن کامل

پیش‌بینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)

با توجه به کمبود ایستگاه‌های اندازه‌گیری در کشور، لزوم استفاده از مدل‌های تجربی برآورد دبی‌ حداکثر لحظه‌ای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیش‌بینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبی‌های متوسط حداکثر روزانه و بارش‌های متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای...

متن کامل

مقایسۀ عملکرد رگرسیون خطی چندمتغیره و مدل‏ های هوش ‏مصنوعی در تخمین تابش کل خورشیدی

در این پژوهش، برای اولین ‏بار در ایران، تابش کل خورشیدی (GSR) با به‏کارگیری داده‏های ساعتی رطوبت خاک و بدون استفاده از داده‏های ساعت آفتابی و مقدار ابرناکی برآورد شد. بدین منظور، از هشت متغیر روزانه شامل میانگین دمای هوا، بیشینة دما، کمینة دما‏، فشار هوا، رطوبت نسبی هوا، بارندگی، دمای میانگین خاک، و رطوبت خاک در کنار تابش کل روزانه‏ در ایستگاه تحقیقاتی هواشناسی دانشگاه بوعلی سینا در یک دورة 435...

متن کامل

پیش‌بینی اسلامپ بتن با استفاده از مدل شبکه عصبی مصنوعی و روش رگرسیون چندمتغیره خطی

روش‌های مختلفی جهت اندازه‌گیری کارایی بتن وجود دارد که یکی از متداول‌ترین و معمول‌ترین روش‌ها، آزمایش اسلامپ است. جهت دست‌یابی به مخلوط‌های بتنی با اسلامپ مورد نظر، باید مخلوط‌های مختلف بتنی ساخته شود و آزمایش اسلامپ بر روی آن‌ها صورت گیرد. جهت صرفه‌جویی در زمان، هزینه و مصالح بهتر است از روش‌های هوشمندی جهت پیش‌بینی اسلامپ بتن بر اساس نتایج مربوط به تعداد معینی از مخلوط‌های بتنی استفاده شود. د...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 24  شماره 2

صفحات  23- 44

تاریخ انتشار 2017-05-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023