ارائه یک رویکرد فازی برای بهینه‌سازی پیش‌بینی سری زمانی با مرتبه بالا

نویسندگان

چکیده مقاله:

It is difficult to apply the real world’s conceptions due to their uncertainty. Generally, time series are known to be non-linear or non-stationary. Regarding these two features, a system should be sensitive enough to apply the unity of time series and repeat this sensitiveness in the prediction. A predict system can exactly scrutinize the hidden features of time series and also can have high predicting runs. Lots of statistical tools such as regression analysis, gradient average, exponential gradient average and auto regression gradient average are used in traditional predictions. One of the biggest challenges of these approaches is the necessity of greater observations and the avoidance of linguistic variables or subjective experts’ ideas. Also these methods are limited to linear being assumptions. In order to dominate the limitations of traditional methods, many researchers have utilized soft computations like fuzzy logic, fuzzy neural networks, evolutionary algorithms and etc. In this paper, we proposed a new fuzzy prediction novel based on the high order fuzzy time series. Our proposed model is based on the higher order fuzzy time series prediction computational approach. In this method a group of features are evaluated, by adding the value of the preceding element of predicting element to the result of the series’ differences. At that, particle swarm optimization is used to optimize Calculation algorithm features, which renders a better performance in order to solve the problems of higher order fuzzy time series. Then by choosing the best features, a result can be inferred as the predicting value. The performance of the approach is presented in which after the fuzzification of time series and creating the logical fuzzy relations, by using the lower limit of the predicting element’s range and its consecutive range, and the resulted difference of sequential elements, some specific computations are done and a set of features are gained. Then, using the particle swarm optimization function, the best parameter is selected. The fitness function in the proposed method has two parts: a general section (the average of all orders) and a partial (Every columns orders). In general section, the overall average of error is shown. In Every columns orders section each column individually considered. For the second to tenth order (9 PSO separate) the answer is checked. The method is as follow; we used two parameters b and d for the feature calculation algorithm. The amount of d   was manually and randomly between 3 – 1000, but PSO find the amount of b. Properties obtained by this method, have less outliers data and waste, which it causes predicted closer, with less error. Finally, defuzzification is performed. The yielded score is the predicted integer value of considered element. In order to decide the precision of the prediction’s rate, we compare the proposed model to other methods using the mean square error and the average error. In order to show the efficiency of the proposed approach, we have implemented this method on the Alabama University’s enrollment database. It can be observed that the suggested method provides better results compared to the other methods and also renders a lower error.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی شاخص بازار بورس تهران با استفاده از مدل سری زمانی فازی مرتبه بالا و الگوریتم شبیه سازی تبرید

During the recent years extensive researchs have been done on fuzzy time series. Since length of intervals affect the forecasting results in these models, doing research in this area became an interesting topic for time series researchers, there are some studies on this issue but their results are not good enough. In this study, we propose a novel simulated annealing heuristic algorithm is use...

متن کامل

طراحی کنترلر فازی مرتبه بالا برای سیستم تهویه مطبوع

این مقاله‏‌ به بررسی عملکرد کنترل کننده فازی مرتبه بالا بر روی یک سیستم تهویه مطبوع می پردازد. این کنترل کننده قادر است در سیستم های پیچیده بخصوص در سیستم های چند وروی- چند خروجی با در نظر گرفتن تغییرات در هریک از متغیرهای کنترلی ، با توجه به نیاز سیستم به تنظیم عملگرهای کنترلی بپردازد. اساس کار بر تنظیم اولیه هر متغیر با روش ممدانی و سپس بهره گیری از کنترل کننده فازی مرتبه بالا در تنظیم بهره ک...

متن کامل

یک روش جدید برای طبقه‎بندی نانوساختارها براساس آنالیز سری زمانی و منطق فازی

Dispersion of nanoparticles in nanostructures is one of the most important indicators designed to verify the effectiveness of proposed methods in the synthesis of nanomaterials. In the recent years, various methods have been suggested for the synthesis of nanostructures in which the Scanning Electron Microscopy (SEM) has been used to show the quality of the nanomaterial. The SEM images of nanop...

متن کامل

طراحی کنترلر فازی مرتبه بالا برای سیستم تهویه مطبوع

این مقاله‏ به بررسی عملکرد کنترل کننده فازی مرتبه بالا بر روی یک سیستم تهویه مطبوع می پردازد. این کنترل کننده قادر است در سیستم های پیچیده بخصوص در سیستم های چند وروی- چند خروجی با در نظر گرفتن تغییرات در هریک از متغیرهای کنترلی ، با توجه به نیاز سیستم به تنظیم عملگرهای کنترلی بپردازد. اساس کار بر تنظیم اولیه هر متغیر با روش ممدانی و سپس بهره گیری از کنترل کننده فازی مرتبه بالا در تنظیم بهره کن...

متن کامل

اندازه گیری خطای پیش بینی شاخص کل بورس تهران با استفاده از روش‌های سری زمانی فازی مرتبه چندگانه و آرما

هدف از این مطالعه پیش بینی شاخص کل بورس اوراق بهادار تهران با استفاده از سری زمانی فازی مرتبه اول، دوم و سوم و روش آرما و آزمون دقت پیش بینی هر یک از این روش ها است. برای این منظور RMSE و مقادیر تعدیل شده آن را بر اساس سری زمانی فازی مرتبه چندگانه و مقادیر زبانی بین 5 تا 15 محاسبه و کمترین RMSE انتخاب شد. بر اساس این انتخاب شاخص کل بورس برای هر یک از سالهای دوره یازده ساله این مطالعه (88-1378) ...

متن کامل

چگونه یک مدل مناسب برای داده‌های سری زمانی انتخاب کنیم؟

The time series is a collection of observation data that are arranged according to time. The main purpose of setting up a time series is to predict future values. The first step in time series data is graphed. Using graphs can provide general information such as uptrend or downtrend, seasonal patterns, periodic presence, and outliers in time series graphs. After graphing the data, if a good for...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 15  شماره 2

صفحات  3- 16

تاریخ انتشار 2018-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023